Welcome!

Agile Computing Authors: Yeshim Deniz, Elizabeth White, Zakia Bouachraoui, Liz McMillan, Pat Romanski

Related Topics: @CloudExpo

@CloudExpo: Article

The Five Pillars of Cloud Computing

Cloud computing requires a dynamic computing infrastructure - there are four other pillars, too

Cloud computing is getting tons of press these days. Everyone has a different perspective and understanding of the technology, and there are myriad variations on the definition of the cloud- William Fellows and John Barr at the 451 Group define cloud computing as the intersection of grid, virtualization, SaaS, and utility computing models. James Staten of Forrester Research describes it as a pool of abstracted, highly scalable, and managed compute infrastructure capable of hosting end-customer applications and billed by consumption. Let's take it a step further and examine the core principles, or pillars, that uniquely define cloud computing.

Pillar 1: Dynamic Computing Infrastructure
Cloud computing requires a dynamic computing infrastructure. The foundation for the dynamic infrastructure is a standardized, scalable, and secure physical infrastructure. There should be levels of redundancy to ensure high levels of availability, but mostly it must be easy to extend as usage growth demands it, without requiring architecture rework. Next, it must be virtualized. Today, virtualized environments leverage server virtualization (typically from VMware, Microsoft, or Xen) as the basis for running services. These services need to be easily provisioned and de-provisioned via software automation. These service workloads need to be moved from one physical server to another as capacity demands increase or decrease. Finally, this infrastructure should be highly utilized, whether provided by an external cloud provider or an internal IT department. The infrastructure must deliver business value over and above the investment.

A dynamic computing infrastructure is critical to effectively supporting the elastic nature of service provisioning and de-provisioning as requested by users while maintaining high levels of reliability and security. The consolidation provided by virtualization, coupled with provisioning automation, creates a high level of utilization and reuse, ultimately yielding a very effective use of capital equipment

Pillar 2: IT Service-Centric Approach
Cloud computing is IT (or business) service-centric. This is in stark contrast to more traditional system- or server- centric models. In most cases, users of the cloud generally want to run some business service or application for a specific, timely purpose; they don't want to get bogged down in the system and network administration of the environment. They would prefer to quickly and easily access a dedicated instance of an application or service. By abstracting away the server-centric view of the infrastructure, system users can easily access powerful pre-defined computing environments designed specifically around their service.

An IT Service Centric approach enables user adoption and business agility - the easier and faster a user can perform an administrative task the more expedient the business moves, reducing costs or driving revenue.

Pillar 3: Self-Service Based Usage Model
Interacting with the cloud requires some level of user self-service. Best of breed self-service provides users the ability to upload, build, deploy, schedule, manage, and report on their business services on demand. Self-service cloud offerings must provide easy-to-use, intuitive user interfaces that equip users to productively manage the service delivery lifecycle.

The benefit of self service from the users' perspective is a level of empowerment and independence that yields significant business agility. One benefit often overlooked from the service provider's or IT team's perspective is that the more self service that can be delegated to users, the less administrative involvement is necessary. This saves time and money and allows administrative staff to focus on more strategic, high-valued responsibilities.

Pillar 4: Minimally or Self-Managed Platform
In order for an IT team or a service provider to efficiently provide a cloud for its constituents, they must leverage a technology platform that is self managed. Best-of-breed clouds enable self-management via software automation, leveraging the following capabilities:

  • A provisioning engine for deploying services and tearing them down recovering resources for high levels of reuse
  • Mechanisms for scheduling and reserving resource capacity
  • Capabilities for configuring, managing, and reporting to ensure resources can be allocated and reallocated to multiple groups of users
  • Tools for controlling access to resources and policies for how resources can be used or operations can be performed

All of these capabilities enable business agility while simultaneously enacting critical and necessary administrative control. This balance of control and delegation maintains security and uptime, minimizes the level of IT administrative effort, and keeps operating expenses low, freeing up resources to focus on higher value projects.

Pillar 5: Consumption-Based Billing
Finally, cloud computing is usage-driven. Consumers pay for only what resources they use and therefore are charged or billed on a consumption-based model. Cloud computing platforms must provide mechanisms to capture usage information that enables chargeback reporting and/or integration with billing systems.

The value here from a user's perspective is the ability for them to pay only for the resources they use, ultimately helping them keep their costs down. From a provider's perspective, it allows them to track usage for charge back and billing purposes.

In summary, all of these five pillars are necessary in producing an enterprise private cloud capable of achieving compelling business value which includes savings on capital equipment and operating costs, reduced support costs, and significantly increased business agility. All of these enable corporations to improve their profit margins and competitiveness in the markets they serve.

More Stories By Dave Malcolm

Dave Malcolm is Vice President & Chief Technologist for Virtualization and Cloud at Quest. With more than 20 years of experience in high tech and enterprise software development, he drives product and technology strategy. Most recently, Malcolm served as the CTO of Surgient, where he led the development team responsible for the creation, delivery, and implementation of the enterprise-class Cloud Automation Platform. With a keen focus on both innovation and practical application, Malcolm and his team have developed a robust infrastructure-as-a-service cloud automation platform and multiple granted cloud computing patents.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...