Welcome!

Agile Computing Authors: Pat Romanski, Zakia Bouachraoui, Yeshim Deniz, Liz McMillan, Carmen Gonzalez

Related Topics: SYS-CON ITALIA, Containers Expo Blog

SYS-CON ITALIA: Article

Cloud Computing: Making Analytics in the Cloud a Reality

There will soon be a myriad of announcements of DBMS offerings in the cloud

There will soon be a myriad of announcements of DBMS offerings in the cloud. Many of these will NOT be marriages made in heaven. However, the most innovative new DBMS software combined with new cloud computing services are here today and truly take advantage of the cloud architecture in order to change the economics and the responsiveness of business analytics.

My belief is that cloud computing will change the economics of business intelligence (BI) and enable a variety of new analytic data management projects and business possibilities. It does so by making the hardware, networking, security, and software needed to create data marts and data warehouses available on demand with a pay-as-you-go approach to usage and licensing.

A computing cloud, such as the Amazon Elastic Compute Cloud, is composed of thousands of commodity servers running multiple virtual machine instances (VMs) of the applications hosted in the cloud. As customer demand for those applications changes, new servers are added to the cloud or idled and new VMs are instantiated or terminated.

Cloud computing infrastructure differs dramatically from the infrastructure underlying most in-house data warehouses and data marts. There are no high-end servers with dozens of CPU cores, SANs, replicated systems, or proprietary data warehousing appliances available in the cloud. Therefore, a new DBMS software architecture is required to enable large volumes of data to be analyzed quickly and reliably on the cloud's commodity hardware. Recent DBMS innovations make this a reality today, and the best cloud DBMS architectures will include:

  1. Shared-nothing, massively parallel processing (MPP) architecture. In order to drive down the cost of creating a utility computing environment, the best cloud service providers use huge grids of identical (or similar) computing elements. Each node in the grid is typically a compute engine with its own attached storage. For a cloud database to successfully "scale out" in such an environment, it is essential that the database have a shared-nothing architecture utilizing the resources (CPU, memory, and disk) found in server nodes added to the cluster. Most databases popularly used in BI today have shared-everything or shared-storage architectures, which will limit their ability to scale in the cloud.

  2. Automatic high availability. Within a cloud-based analytic database cluster, node failures, node changes, and connection disruptions can occur. Given the vast number of processing elements within a cloud, these failures can be made transparent to the end user if the database has the proper built-in failover capabilities. The best cloud databases will replicate data automatically across the nodes in the cloud cluster, be able to continue running in the event of 1 or more node failures ("k-safety"), and be capable of restoring data on recovered nodes automatically -- without DBA assistance. Ideally, the replicated data will be made "active" in different sort orders for querying to increase performance.

  3. Ultra-high performance. One of the game-changing advantages of the cloud is the ability to get an analytic application up quickly (without waiting for hardware procurement). However, there can be some performance penalty due to Internet connectivity speeds and the virtualized cloud environment. If the analytic performance is disappointing, the advantage is lost. Fortunately, the latest shared-nothing columnar databases are designed specifically for analytic workloads, and they have demonstrated dramatic performance improvements over traditional, row-oriented databases (as verified by industry experts, such as Gartner and Forrester, and by customer benchmarks). This software performance improvement, coupled with the hardware economies of scale provided by the cloud environment, results in a new economic model and competitive advantage for cloud analytics.

  4. Aggressive compression. Since cloud costs are typically driven by charges for processor and disk storage utilization, aggressive data compression will result in very large cost savings. Row-oriented databases can achieve compression factors of about 30% to 50%; however, the addition of necessary indexes and materialized views often swells databases to 2 to 5 times the size of the source data. But since the data in a column tends to be more similar and repetitive than attributes within rows, column databases often achieve much higher levels of compression. They also don't require indexes. The result is normally a 4x to 20x reduction in the amount of storage needed by columnar databases and a commensurate reduction in storage costs.

  5. Standards-based connectivity. While there are a number of special-purpose file systems that have been developed for the cloud environment that can provide high performance, they lack the standard connectivity needed to support general-purpose business analytics. The broad base of analytic users will use existing commercial ETL and reporting software that depend on SQL, JDBC, ODBC, and other DBMS connectivity standards to load and query cloud databases. Therefore, it's imperative for cloud databases to support these connection standards to enable widespread use of analytic applications.
In summary, cloud databases with the architectural characteristics described above will be able to not just run in the cloud, but thrive there by:

  • "Scaling out," as the cloud itself does
  • Running fast without high-end or custom hardware
  • Providing high availability in a fluid computing environment
  • Minimizing data storage, transfer, and CPU utilization (to keep cloud computing fees low)

More Stories By Jerry Held

Jerry Held is Executive Chairman of Vertica and CEO of the Held Consulting Group, a firm that provides strategic consulting to CEOs and senior executives of technology firms ranging from startups to very large organizations and private equity firms. Prior to his current position, Held was a senior executive at both Oracle Corp. and Tandem Computers.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...