Welcome!

Web 2.0 Authors: Pat Romanski, Nikita Ivanov, Carmen Gonzalez, Liz McMillan, Victoria Livschitz

Related Topics: Cloud Expo, Virtualization

Cloud Expo: Article

Understanding "Clouded" Terms of Cloud Computing

The definitions vary from source to source, author to author

Michael Sheehan's "GoGrid" Blog

There seems to be a lot of debate around different types of Computing Terms being used to describe server and hosting solutions. In fact, in the past, the blogosphere seemed to throw around terms like Grid, Cloud, Utility, Distributed and Cluster computing almost interchangeably. But, as of this revision, one term is rising to the top: Cloud Computing. (See recent trend analysis here.)

The definitions vary from source to source, author to author. While I cannot (and will not) attempt to articulate the end-all definition, I can write about how I view these terms and how they apply to the products that we offer, namely GoGrid. But before I dive into MY interpretation, providing what others view on these subjects may shed some light on our framework.

Terms as defined by Wikipedia

wikipedia_logo_sm Many people view Wikipedia as an authoritative source of information but that is always subject to debate. Wikipedia defines some of these terms as follows (not the end-all definitions though) and I have taken some liberties of removing non-relevant information for argument’s sake:

  • Grid Computing - http://en.wikipedia.org/wiki/Grid_computing
    • Multiple independent computing clusters which act like a “grid” because they are composed of resource nodes not located within a single administrative domain. (formal)
    • Offering online computation or storage as a metered commercial service, known as utility computing, computing on demand, or cloud computing.
    • The creation of a “virtual supercomputer” by using spare computing resources within an organization.
  • Cloud Computing - http://en.wikipedia.org/wiki/Cloud_computing
    • Cloud computing is a computing paradigm shift where computing is moved away from personal computers or an individual application server to a “cloud” of computers. Users of the cloud only need to be concerned with the computing service being asked for, as the underlying details of how it is achieved are hidden. This method of distributed computing is done through pooling all computer resources together and being managed by software rather than a human.
    • The services being requested of a cloud are not limited to using web applications, but can also be IT management tasks such as requesting of systems, a software stack or a specific web appliance.
  • Utility Computing - http://en.wikipedia.org/wiki/Utility_computing :
    • Conventional Internet hosting services have the capability to quickly arrange for the rental of individual servers, for example to provision a bank of web servers to accommodate a sudden surge in traffic to a web site.
    • “Utility computing” usually envisions some form of virtualization so that the amount of storage or computing power available is considerably larger than that of a single time-sharing computer. Multiple servers are used on the “back end” to make this possible. These might be a dedicated computer cluster specifically built for the purpose of being rented out, or even an under-utilized supercomputer. The technique of running a single calculation on multiple computers is known as distributed computing.
  • Distributed Computing - http://en.wikipedia.org/wiki/Distributed_computing
    • A method of computer processing in which different parts of a program are run simultaneously on two or more computers that are communicating with each other over a network. Distributed computing is a type of segmented or parallel computing, but the latter term is most commonly used to refer to processing in which different parts of a program run simultaneously on two or more processors that are part of the same computer. While both types of processing require that a program be segmented—divided into sections that can run simultaneously, distributed computing also requires that the division of the program take into account the different environments on which the different sections of the program will be running. For example, two computers are likely to have different file systems and different hardware components.

Upon initial read, Wikipedia seems to be fairly close to my definitions but still not exact. Of note, “metered commercial service” rings true within both the Grid Computing and Cloud Computing definitions. However, it also seems to spill into the Utility Computing mantra. As a side note, our newest product, GoGrid, utilizes a metered service similar to how an energy company would charge you for electricity or gas, basing charges simply on what you use.

Traditional “Clouds” vs. Modern “Clouds”

Grid Computing seems to also have some origins in the idea of harnessing multiple computer resources to gain a more powerful source of shared power and computational resources. folding@home However, I would like to suggest that this definition is showing some age and, in my opinion, falls more under Distributed Computing. When I think about Distributed Computing, SETI@Home or Folding@Home come to mind, which is definitely very different from where things are moving now. So, let’s put Distributed Computing aside for this discussion.

Traditionally, the “cloud” was loosely defined as anything outside of a controlled network. When we, as Hosting Providers, discussed “the cloud” in the past with our customers, it was about the nebulous network that is known as the Internet. The cloud is loosely managed and traditionally unreliable. To that end, we do not refer to anything within our control or our networks as “the cloud” as it is too vague and un-manageable. It is outside of our Service Level Agreement and nothing that we can guarantee or deem reliable. However, once traffic enters our network, we manage it. That is where the modern interpretation of the “Cloud” comes into play. Products like Amazon’s EC2 and ServePath’s GoGrid have internalized Cloud Computing by building a reliable infrastructure around it. While the Internet remains as a Cloud of coupled servers and networks, GoGrid, for example, extends this by creating an infrastructure that offers “control in the cloud.”

Originally, I wrote that “Cloud Computing does not necessarily equate to reliable service.” This, obviously, is a contradiction in itself if you apply both the historic and modern definitions at the same time. If one views the Internet as “Cloud Computing,” there are obvious weaknesses within this vast network. With the Internet, you are at the whim of various service providers, Internet backbones and routers managing the traffic within the Cloud. But if one applies the more modern interpretations of this, Cloud Computing now offers robust infrastructure, features and services that were previously unavailable.

Tying the Grid to the Cloud

In order to provide “modern” Cloud Computing, a provider must have some sort of an organized and controlled network infrastructure and topology. What any particular service provider chooses is up to them. For GoGrid, we elected to build our Cloud offering on top of a Grid of servers as well as utilize a Utility-based billing model to only charge the end-user for what they use within our “Cloud.” The end-result is a tightly controlled Grid infrastructure that provides a Cloud Computing experience, more so than most if not all of the other hosting providers out there.

However, what is important here is looking at Cloud, Grid and/or Utility Computing from the perspective of a Hosting Provider. Definitely this is where things get contentious. As I mentioned before, GoGrid offers a traditional utility billing process where you simply pay for what you uses. This breaks from many “old school” hosting billing processes of paying up-front for server(s) and bandwidth, month or year-long contracts and then paying for overages. Does this mean that it is Utility Computing? Not really. One has to dig into this a bit more. GoGrid uses a network of similarly-configured servers bound together by management and administrative servers and virtualization tools to provide a very unique Cloud offering that is distinct from traditional hosting.

Dedicated, Managed and Cloud Servers offered by ServePath guarantee hardware resources like RAM and Load Balancing and full root and administrator access but these paths rapidly diverge at this point. Once one steps into the virtualization arena, or dare I say “the cloud,” new features are available including rapid deployments, cloning, snapshots, fault tolerance, and on-demand scalability.

ServePath chose Grid Computing to power GoGrid and provide the flexibility, scalability and robust infrastructure as the fundamental foundation of an award-winning Cloud Infrastructure product, GoGrid. The end results is a Cloud Hosting Provider offering that delivers better environmental properties, faster vertical and horizontal scalability and ultimately better fits for cost, performance and energy-concerned customers.


[This appeared originally here and is republished by kind permission of the author, who retains copyright.]

More Stories By Michael Sheehan

Michael Sheehan is the Technology Evangelist for Cloud Computing Infrastructure provider GoGrid and ServePath and is an avid technology pundit. GoGrid is the cloud hosting division of ServePath Dedicated Hosting, a company with extensive expertise and experience in web hosting infrastructure. Follow him on Twitter.

Comments (4) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
maydbs 10/30/08 12:11:04 PM EDT

Hi Michael,

even thought you wrote this a few months ago, i got to read it today and thought it was very current, if you notice how much resistance we've been having to Cloud Computing. I linked this post on the blog i'm working on to illustrate that maybe some people are just too afraid because they dont understand about it enough! let me know if it offends you in anyway and i'll remove it immediately. Tks!

Snehal Antani 07/17/08 12:57:37 PM EDT

So in response to a blog post that positions Grid and Cloud computing, I've expanded on my thoughts in this area. You can read the discussions at: http://www-128.ibm.com/developerworks/forums/thread.jspa?threadID=214794...

The post is as follows:
I see "Grid Computing" as the coordinated execution of a complex task across a collection of resources. The burden of the "grid" is to provide control over that execution (initiating the execution, stopping the execution, aggregating results of the execution, reporting the status of the execution, and so on).

The "grid" should be transparent to the end user. Take SETI@Home for example. The "User" is the researcher that will analyze the results of all of the computations. The SETI@Home platform manages partitioning the data into discrete chunks, dispatching & monitoring the results across the collection of CPU's spread across the world, and aggregating the results to provide a single view to the "user".

Cloud Computing on the other hand provides the virtualized infrastructure upon which the Grid Endpoints will execute. So for example, the "cloud" would provide an "infinite" number of operating system images on which the SETI@Home software would execute. The cloud shouldn't care about application-specific data, nor should it care about the business logic that is actually executing within a virtualized image. The cloud cares about allocating new images (synonymous to LPAR's) for applications to run, keeping track of how much physical resources (actual CPU cycles for example) the virtual images consumed, cleaning up the virtual images upon completion, and billing the client for the amount of resources consumed. So with these definitions, going back to my example of SETI@Home, I would argue that this software has both a grid computing component as well as a cloud computing component, where the # of registered computers is part of a pool of hardware resources that already have the SETI@Home grid application containers installed and ready to go), but we should be sure to see 2 separate components and responsibilities: the decision to pick a physical machine to dispatch to, and the grid container that executes the scientific processing.

To summarize, grid applications and therefore the "Grid Computing" paradigm, which I consider an application architecture and containers for running the business logic, would execute on top of an "infrastructure cloud", which appears as an infinite # of LPAR's.

BTW, we've had the ability to run'private clouds' for 30-40 years - multi-tenancy via S/390 & MVS - and we do it all over the place today. The key difference is that today, w/ Amazon EC2 for example, we can dynamically create and then destroy complete 'LPARS' relatively cheaply; whereas in the mainframe and other big iron hardware, LPAR's tend to be statically defined. In both cases the hardware is virtualized under the covers, some sort of VM/hypervisor contains the operating system image, some type of application server or container executes the business logic, and some type of workload manager assures workload priorities and provides the chargeback.

I've alluded to some of this in my article on 'enterprise grid and batch computing': http://www-128.ibm.com/developerworks/websphere/techjournal/080 4_antani/0804_antani.html.

The Parallel Job Manager (described in that article) in WebSphere XD Compute Grid would essentially be the Grid Manager, whose job is to coordinate the execution of complex tasks across the cluster of resources (Grid Execution Environments). Today we don't discuss the ability to dynamically create new LPAR's (and therefore call ourselves a cloud computing infrastructure), but you can easily do this with a product like Tivoli Provisioning Manager. Basically, take the bottom image in my article: http://www-128.ibm.com/developerworks/websphere/techjourn al/0804_antani/0804_antani.html#xdegc and connect Tivoli Provisioning Manager to the On-Demand Router (part of WebSphere Virtual Enterprise).

Snehal Antani 06/29/08 06:41:06 PM EDT

Excellent article. This provides an excellent survey of the technologies and helps put each of them in perspective. I wrote an article that compliments this one; I discuss how various patterns from each of these domains can be brought together to provide a complete grid and batch solution: http://www.ibm.com/developerworks/websphere/techjournal/0804_antani/0804...

Blue Grid 06/06/08 04:00:15 PM EDT

IBM has devoted 200 researchers to its cloud computing project.

@ThingsExpo Stories
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...