Welcome!

Agile Computing Authors: Pat Romanski, Liz McMillan, Corey Roth, Elizabeth White, Yeshim Deniz

Related Topics: @ThingsExpo, Java IoT, Agile Computing, Wearables, @CloudExpo, @DXWorldExpo

@ThingsExpo: Article

[video] @CHarrold303 Is Building a Personal #IoT | @ThingsExpo #M2M #AI

The birth of an IoT DIY project from beginning to finish

About 6 months ago I had this "brilliant" idea that I would like to monitor the water level of my plants living on my balcony. The goal was to keep them healthy and happy (and producing vegetables for me in my urban garden). After looking for a commercial solution to aid me in this project, I discovered that there wasn't anything out there that would do what I need. The primary reason why nothing worked for me was that none of the products out there are capable of monitoring multiple plants at once, leaving me with the need to buy multiple units. At 10-15 containers for plants, this was immediately recognized as unrealistic, due to their high individual cost. Being the enterprising person I am, my immediate thought was, "I will just build one! How hard can it be?"

Six months have passed and I am starting to grasp the reality of it. It isn't hard, in the sense that I am not treading lots of new ground and making a lot of things up from scratch. It is definitely not simple either. I have a working prototype of a single instance of a soil moisture sensor, temperature and humidity sensor, and a light level sensor in a "sensor pack." Emphasis being on "prototype" and "single." It has taken me 6 months of time to buy, assemble, trial, error, and otherwise jigger around with bits and wires to get a working prototype that is extremely fragile and not at all ready for commercial use. Now to be fair, I have a full-ime job so I didn't do this all day every day; however, I did spend serious late night hours on it, and it was not a trivial time or monetary investment (still cheaper than the commercial option though). The net outcome is that at achieving phase 1 completion, I have a working prototype. I can monitor a single plant, indoors, relatively close to a power outlet, and with a bunch of wires and bits and bobs all over that wiggle loose if you look at them too hard; and that's kind of the big problem. Not all IoT projects are supposed to be indoors with "plug-in" power supplies and exposed wires; it just isn't feasible. The reality of "build it yourself" IoT is that unless you already like technology and making things, and don't mind that charming "cobbled together industrial mess" aesthetic, it is incredibly unlikely you would ever really get into it. If you do, it is like running a race where the finish line moves every time you reach it. I intend to continue on, but if you are considering your own IoT initiative you should know what you are signing up for up front!

Next Steps
To realize the vision for my original ideas on this project, I need things that are well outside my comfort zone and skill level. For example, I need to build something that is waterproof, contains my sensor package and a functional computer, and is more or less untouched by the changing weather outside. At that point, breadboards and wires won't cut it if I want to actually use this system outdoors. I need to effectively build the infrastructure for my own infrastructure project. A short list of what I need to do next looks like this:

  • First and most simple, I need to make or find something that can be a good housing for my package of sensors that allows them to work outdoors while protecting them at the same time. It has to be waterproof, with a clear spot for the light sensor and needs some sort of grate for the temperature and humidity probe to work right. The housing should be able to fit in some sort of processor as well (I am thinking of a Pi 0 for size reasons, or Arduino for power reasons) to run the code, so I can collect and deliver sensor readings to the central hub. Then I have to have one of these per container on my balcony (right now that would be 10). So while I can one-off make all of them, Ideally I want to find something more scalable and affordable since I am thinking about the "production ready" aspects of the project. *(See footnotes)
  • It has to be able to run on a battery and/ (preferably) solar power - this is VERY non-trivial. Everything in an IoT devices consumes power. Everything, including the wires and connections themselves have an impact on the amount of power needed to run the device. You can do lots of things, like "sleep modes" and power saving tricks and etc..., but the Raspberry Pi (by itself, no sensors) needs 5V just to boot up. I have seen a number of "Pi on Battery" projects and a Pi on solar or two so it can be done, but again, this is a pretty big part of "consumerization" - Solar is a nice way to go since I can somewhat assume light (plants), and changing batteries is both annoying and anti-environmental so solar is a good balance.****
  • I will have to find a source to build custom PCB boards** (that's the green boards with the wires and connections embedded in them) so that I can solder my sensors in place to keep them from moving around. It will have to fit into the above housing, and provide all the connections I need for power, the CPU, and the sensors themselves.
  • I really want to find some sort of Bluetooth LE or other wireless means to connect the sensor packs into a central collection system.*** This is yet another process I have never done before and will have to learn about in order to work with the wireless transmission method I end up choosing.
  • In order to really be considered a success, and production ready, I will need to duplicate my sensor pack 10 times - one for each plant. To be fair I could consolidate and JUST do the soil moisture at each plant, and take temp, humidity and light levels at a central spot, but I am thinking of "consumerization" of the finished product. What if the end user has a big yard or multiple "eco systems" such as deep shade, a greenhouse or different plant types? There are too many variations, even from pot to pot on my small patio, that having the ability to do temperature and humidity alongside the soil moisture monitoring is ultimately the most useful for a consumerized product.
  • I will have to get a soldering iron and spend some time practicing in order to solder well. This isn't as trivial as it sounds. Soldering mistakes on my custom-made PCB board could get expensive in a hurry, and the connections have to be good or my device will fail in the field and that means my consumer has to deal with a bad device. This can be outsourced of course, and in a full commercial project can be handled in manufacturing, but that is a cost that I have no ability to bear in my DIY project scope.

Ultimately the end game for any device is that I will want to operationalize my prototype into something more consumer friendly for someone with potentially limited skill and technical know-how. The benefit to me for my little project is that the end product becomes something I don't have to babysit every day, but something I can turn on and forget until it reminds me it is there.

Potential
Considering all the needs and desires for my own little "baby" IoT project, I realized I will have to perform electrical engineering, industrial and interface design, consumer focus testing, and assembly and testing.

No big deal, right?

At this point it hit me why the whole concept of the IoT is both amazing in its potential to be something incredible and something incredibly destructive. You'll notice that I footnoted a couple of points above, relating to things I genuinely don't know how to do (yet). There are resources out there for a lot of those things, maybe even all of it. The best part about our modern world is that you are very rarely the first to experiment with something. There is usually a life line out there, unless you are performing bleeding edge innovation. This is why there is so much potential in IoT. You are taking work done by others and enhancing, improving, or simply modifying it to match your need. This is the heart of the open source movement and IoT is no different. Nothing really starts at "zero" and you don't have to figure out every single detail. I didn't have to build the sensors themselves. I certainly didn't design the Raspberry Pi, or create a language to use to talk to the sensors. I am using things already discovered in a new(ish) way for my specific project. That is an amazing thing to be able to do, and more importantly it means that innovation in IoT can happen sometimes frighteningly fast.

Destruction
This ability to innovate at high speed also means that there is an incredibly destructive force in IoT. We saw some of it in the Fall with the attacks from the Mirai botnet being used to take down Dyn DNS hosting and causing major Internet issues. If you attach something to the internet you create the risk that it can be used maliciously. My own IoT project is definitely not hardened; I have all default passwords on everything, because it is faster and easier when I am constantly changing code and troubleshooting if I don't have to type in a 14 character password with symbols and numbers. I recognize the risk, but I am not connecting outside my own LAN so the risk is contained. A commercial product that needs to relay information off a central server or website is just a bullseye in the ether for hackers looking for things to compromise to get at data.

As I went through this project, it was easy for me to see why defaults work their way into commercial IoT devices so easily; no one wants to have to hassle with multi-factor security or cumbersome passwords during the prototype phase when things are constantly changing. Unfortunately I know the demands to get things "out the door" all too well and in that rush is when defaults, bad code, and "it's working, ship it" intersect is when bad security happens. This is where consumer design and security clash, and IoT is one of those rare places that we are collectively going to need to get right, because the stakes are getting really high. In my case, my plants might not get watered if my rig is compromised. No big deal for me, I will hand water them again, but if it is my car, my fire and smoke alarm, my medical equipment, the controls for my elevator, or any number of other things that are connected to the Internet, we could be talking about serious or even life threatening risks.

Outlook
I am generally pro IoT and innovation, and I do not want this blog to read like a contrarian piece since that's not how I feel about IoT. Instead I meant it to illustrate two things; the first one is that undeniably IoT is important, becoming more and more a part of our daily lives. With that great power comes an even greater responsibility to ensure security and safety is a part of the design, not an afterthought.

The second is that IoT is not a simple exercise in "connecting things together" and linking it to the Internet. The amount of knowledge and skills required to make a true commercial IoT device functional and successful is a legitimate challenge. The barriers to entry are high, even for someone like me that enjoys learning and discovering and has decent technical background.

Can we accelerate the ability of IoT technologies, but keep it engaging and approachable without making them so simplistic and unsafe, that we create a new army of devices that wield increasing power over our daily lives? I truly believe we can, and I hope that in a small way my own IoT project is one of many small bridges leading to plan to figuring out the how of the technology, so that others will take my work and make it that much better.

Watch out for the next part of this blog Do It Yourself IoT blog series. As we go forward I will keep updating and sharing my learnings as I move into phase 2 and try to make my vision come to life. The video for the final prototype is over on YouTube, here.

Footnotes:

* - I toyed with "MacGuyvering" the housing out of things like outdoor electrical boxes and such, but then I also started investigating things like 3D printing options which could allow me to print a case that fits my package of sensors and connections perfectly because it is built for it. If I wanted to get really serious about it and sell them, I could invest in my own printer; for 4-500$ you can get a simple but reliable 3d printer that would do what I needed. As I was researching I also found options for "on demand" 3d printing services too. A great resource list is here: https://all3dp.com/best-online-3d-printing-service/

** - I have zero experience designing PCB boards. I have some EE friends, but I want to learn on my own for the full experience. In doing some research I found a number of places that will "print" you a PCB that you design, and a couple even have an online tool for designing the PCB itself. I am using EasyEDA (https://easyeda.com/) which has a nice library of user-submitted designs and "templates" that help a total n00b like me get started. (I could, were I so inclined, go so far as to print my own Raspberry Pi motherboard in effect and truly slim down my design, but that seems like a LOT of extra work for a "fun" project, but it could be done - just not by me!)

*** - It turns out that while making things talk over distance is pretty standard tech, miniaturizing it and making it work the way you want is not. I have started delving into the things available for this and found a few options. I have NOT played with any of them yet, but this one I found on Amazon might do the trick: https://www.amazon.com/Arduino-NRF24L01-2-4GHz-Wireless-Transceiver

I *could* assume the end consumer has a usable wifi network, but again, if we are talking about potential uses outside in a big yard or garden, their house-based wifi may not cut it. Also I want to be conscious of security so having my own send and receive function that does not rely on something external means that I don't expose anything outside of the devices themselves.

**** Something that keeps coming up for this project is that an Arduino is likely to be a much better option for running the sensors and sending the information to the central station (which could be the Raspberry Pi). The Arduino has a significantly lower power draw (A solar panel to run a single RPi for 24 hours a day would cost upwards of 150$ - not realistic for a distributed monitoring system!) and it can do the analog sensor readings natively which removes cost from the sensor package in the form of the MCP3008 chip I need to do analog conversions for the digital-only RPi. It is definitely something I will have to explore as I go into the next phase of the project. A very nice writeup on running a solar Raspberry Pi is here: http://www.voltaicsystems.com/blog/powering-a-raspberry-pi-from-solar-power/

The same site has a number of other write ups and important power consumption info for solar-based projects.

-- Check out the companion video to this blog post: On YouTube, here, along with the rest of the video series for this project. --

More Stories By Christopher Harrold

As an Agent of IT Transformation, I have over 20 years experience in the field. Started off as the IT Ops guy and followed the trends of the DevOps movement wherever I went. I want to shake up accepted ways of thinking and develop new models and designs that push the boundaries of technology and of the accepted status quo. There is no greater reward for me than seeing something that was once dismissed as "impossible" become the new normal, and I have been richly rewarded throughout my career with this result. In my last role as CTO at EMC Corporation, I was working tirelessly with a small group of engineers and product managers to build a market leading, innovative platform for data analytics. Combining best of breed storage, analytics and visualization solutions that enables the Data as a Service model for enterprise and mid sized companies globally.

@ThingsExpo Stories
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant tha...
"MobiDev is a software development company and we do complex, custom software development for everybody from entrepreneurs to large enterprises," explained Alan Winters, U.S. Head of Business Development at MobiDev, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
I think DevOps is now a rambunctious teenager - it's starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
Recently, WebRTC has a lot of eyes from market. The use cases of WebRTC are expanding - video chat, online education, online health care etc. Not only for human-to-human communication, but also IoT use cases such as machine to human use cases can be seen recently. One of the typical use-case is remote camera monitoring. With WebRTC, people can have interoperability and flexibility for deploying monitoring service. However, the benefit of WebRTC for IoT is not only its convenience and interopera...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
It is of utmost importance for the future success of WebRTC to ensure that interoperability is operational between web browsers and any WebRTC-compliant client. To be guaranteed as operational and effective, interoperability must be tested extensively by establishing WebRTC data and media connections between different web browsers running on different devices and operating systems. In his session at WebRTC Summit at @ThingsExpo, Dr. Alex Gouaillard, CEO and Founder of CoSMo Software, presented ...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, introduced two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a multip...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...