Welcome!

Agile Computing Authors: Liz McMillan, Pat Romanski, Zakia Bouachraoui, Yeshim Deniz, Elizabeth White

Related Topics: @ThingsExpo, Java IoT, Agile Computing, Wearables, @CloudExpo, @DXWorldExpo

@ThingsExpo: Article

[video] @CHarrold303 Is Building a Personal #IoT | @ThingsExpo #M2M #AI

The birth of an IoT DIY project from beginning to finish

About 6 months ago I had this "brilliant" idea that I would like to monitor the water level of my plants living on my balcony. The goal was to keep them healthy and happy (and producing vegetables for me in my urban garden). After looking for a commercial solution to aid me in this project, I discovered that there wasn't anything out there that would do what I need. The primary reason why nothing worked for me was that none of the products out there are capable of monitoring multiple plants at once, leaving me with the need to buy multiple units. At 10-15 containers for plants, this was immediately recognized as unrealistic, due to their high individual cost. Being the enterprising person I am, my immediate thought was, "I will just build one! How hard can it be?"

Six months have passed and I am starting to grasp the reality of it. It isn't hard, in the sense that I am not treading lots of new ground and making a lot of things up from scratch. It is definitely not simple either. I have a working prototype of a single instance of a soil moisture sensor, temperature and humidity sensor, and a light level sensor in a "sensor pack." Emphasis being on "prototype" and "single." It has taken me 6 months of time to buy, assemble, trial, error, and otherwise jigger around with bits and wires to get a working prototype that is extremely fragile and not at all ready for commercial use. Now to be fair, I have a full-ime job so I didn't do this all day every day; however, I did spend serious late night hours on it, and it was not a trivial time or monetary investment (still cheaper than the commercial option though). The net outcome is that at achieving phase 1 completion, I have a working prototype. I can monitor a single plant, indoors, relatively close to a power outlet, and with a bunch of wires and bits and bobs all over that wiggle loose if you look at them too hard; and that's kind of the big problem. Not all IoT projects are supposed to be indoors with "plug-in" power supplies and exposed wires; it just isn't feasible. The reality of "build it yourself" IoT is that unless you already like technology and making things, and don't mind that charming "cobbled together industrial mess" aesthetic, it is incredibly unlikely you would ever really get into it. If you do, it is like running a race where the finish line moves every time you reach it. I intend to continue on, but if you are considering your own IoT initiative you should know what you are signing up for up front!

Next Steps
To realize the vision for my original ideas on this project, I need things that are well outside my comfort zone and skill level. For example, I need to build something that is waterproof, contains my sensor package and a functional computer, and is more or less untouched by the changing weather outside. At that point, breadboards and wires won't cut it if I want to actually use this system outdoors. I need to effectively build the infrastructure for my own infrastructure project. A short list of what I need to do next looks like this:

  • First and most simple, I need to make or find something that can be a good housing for my package of sensors that allows them to work outdoors while protecting them at the same time. It has to be waterproof, with a clear spot for the light sensor and needs some sort of grate for the temperature and humidity probe to work right. The housing should be able to fit in some sort of processor as well (I am thinking of a Pi 0 for size reasons, or Arduino for power reasons) to run the code, so I can collect and deliver sensor readings to the central hub. Then I have to have one of these per container on my balcony (right now that would be 10). So while I can one-off make all of them, Ideally I want to find something more scalable and affordable since I am thinking about the "production ready" aspects of the project. *(See footnotes)
  • It has to be able to run on a battery and/ (preferably) solar power - this is VERY non-trivial. Everything in an IoT devices consumes power. Everything, including the wires and connections themselves have an impact on the amount of power needed to run the device. You can do lots of things, like "sleep modes" and power saving tricks and etc..., but the Raspberry Pi (by itself, no sensors) needs 5V just to boot up. I have seen a number of "Pi on Battery" projects and a Pi on solar or two so it can be done, but again, this is a pretty big part of "consumerization" - Solar is a nice way to go since I can somewhat assume light (plants), and changing batteries is both annoying and anti-environmental so solar is a good balance.****
  • I will have to find a source to build custom PCB boards** (that's the green boards with the wires and connections embedded in them) so that I can solder my sensors in place to keep them from moving around. It will have to fit into the above housing, and provide all the connections I need for power, the CPU, and the sensors themselves.
  • I really want to find some sort of Bluetooth LE or other wireless means to connect the sensor packs into a central collection system.*** This is yet another process I have never done before and will have to learn about in order to work with the wireless transmission method I end up choosing.
  • In order to really be considered a success, and production ready, I will need to duplicate my sensor pack 10 times - one for each plant. To be fair I could consolidate and JUST do the soil moisture at each plant, and take temp, humidity and light levels at a central spot, but I am thinking of "consumerization" of the finished product. What if the end user has a big yard or multiple "eco systems" such as deep shade, a greenhouse or different plant types? There are too many variations, even from pot to pot on my small patio, that having the ability to do temperature and humidity alongside the soil moisture monitoring is ultimately the most useful for a consumerized product.
  • I will have to get a soldering iron and spend some time practicing in order to solder well. This isn't as trivial as it sounds. Soldering mistakes on my custom-made PCB board could get expensive in a hurry, and the connections have to be good or my device will fail in the field and that means my consumer has to deal with a bad device. This can be outsourced of course, and in a full commercial project can be handled in manufacturing, but that is a cost that I have no ability to bear in my DIY project scope.

Ultimately the end game for any device is that I will want to operationalize my prototype into something more consumer friendly for someone with potentially limited skill and technical know-how. The benefit to me for my little project is that the end product becomes something I don't have to babysit every day, but something I can turn on and forget until it reminds me it is there.

Potential
Considering all the needs and desires for my own little "baby" IoT project, I realized I will have to perform electrical engineering, industrial and interface design, consumer focus testing, and assembly and testing.

No big deal, right?

At this point it hit me why the whole concept of the IoT is both amazing in its potential to be something incredible and something incredibly destructive. You'll notice that I footnoted a couple of points above, relating to things I genuinely don't know how to do (yet). There are resources out there for a lot of those things, maybe even all of it. The best part about our modern world is that you are very rarely the first to experiment with something. There is usually a life line out there, unless you are performing bleeding edge innovation. This is why there is so much potential in IoT. You are taking work done by others and enhancing, improving, or simply modifying it to match your need. This is the heart of the open source movement and IoT is no different. Nothing really starts at "zero" and you don't have to figure out every single detail. I didn't have to build the sensors themselves. I certainly didn't design the Raspberry Pi, or create a language to use to talk to the sensors. I am using things already discovered in a new(ish) way for my specific project. That is an amazing thing to be able to do, and more importantly it means that innovation in IoT can happen sometimes frighteningly fast.

Destruction
This ability to innovate at high speed also means that there is an incredibly destructive force in IoT. We saw some of it in the Fall with the attacks from the Mirai botnet being used to take down Dyn DNS hosting and causing major Internet issues. If you attach something to the internet you create the risk that it can be used maliciously. My own IoT project is definitely not hardened; I have all default passwords on everything, because it is faster and easier when I am constantly changing code and troubleshooting if I don't have to type in a 14 character password with symbols and numbers. I recognize the risk, but I am not connecting outside my own LAN so the risk is contained. A commercial product that needs to relay information off a central server or website is just a bullseye in the ether for hackers looking for things to compromise to get at data.

As I went through this project, it was easy for me to see why defaults work their way into commercial IoT devices so easily; no one wants to have to hassle with multi-factor security or cumbersome passwords during the prototype phase when things are constantly changing. Unfortunately I know the demands to get things "out the door" all too well and in that rush is when defaults, bad code, and "it's working, ship it" intersect is when bad security happens. This is where consumer design and security clash, and IoT is one of those rare places that we are collectively going to need to get right, because the stakes are getting really high. In my case, my plants might not get watered if my rig is compromised. No big deal for me, I will hand water them again, but if it is my car, my fire and smoke alarm, my medical equipment, the controls for my elevator, or any number of other things that are connected to the Internet, we could be talking about serious or even life threatening risks.

Outlook
I am generally pro IoT and innovation, and I do not want this blog to read like a contrarian piece since that's not how I feel about IoT. Instead I meant it to illustrate two things; the first one is that undeniably IoT is important, becoming more and more a part of our daily lives. With that great power comes an even greater responsibility to ensure security and safety is a part of the design, not an afterthought.

The second is that IoT is not a simple exercise in "connecting things together" and linking it to the Internet. The amount of knowledge and skills required to make a true commercial IoT device functional and successful is a legitimate challenge. The barriers to entry are high, even for someone like me that enjoys learning and discovering and has decent technical background.

Can we accelerate the ability of IoT technologies, but keep it engaging and approachable without making them so simplistic and unsafe, that we create a new army of devices that wield increasing power over our daily lives? I truly believe we can, and I hope that in a small way my own IoT project is one of many small bridges leading to plan to figuring out the how of the technology, so that others will take my work and make it that much better.

Watch out for the next part of this blog Do It Yourself IoT blog series. As we go forward I will keep updating and sharing my learnings as I move into phase 2 and try to make my vision come to life. The video for the final prototype is over on YouTube, here.

Footnotes:

* - I toyed with "MacGuyvering" the housing out of things like outdoor electrical boxes and such, but then I also started investigating things like 3D printing options which could allow me to print a case that fits my package of sensors and connections perfectly because it is built for it. If I wanted to get really serious about it and sell them, I could invest in my own printer; for 4-500$ you can get a simple but reliable 3d printer that would do what I needed. As I was researching I also found options for "on demand" 3d printing services too. A great resource list is here: https://all3dp.com/best-online-3d-printing-service/

** - I have zero experience designing PCB boards. I have some EE friends, but I want to learn on my own for the full experience. In doing some research I found a number of places that will "print" you a PCB that you design, and a couple even have an online tool for designing the PCB itself. I am using EasyEDA (https://easyeda.com/) which has a nice library of user-submitted designs and "templates" that help a total n00b like me get started. (I could, were I so inclined, go so far as to print my own Raspberry Pi motherboard in effect and truly slim down my design, but that seems like a LOT of extra work for a "fun" project, but it could be done - just not by me!)

*** - It turns out that while making things talk over distance is pretty standard tech, miniaturizing it and making it work the way you want is not. I have started delving into the things available for this and found a few options. I have NOT played with any of them yet, but this one I found on Amazon might do the trick: https://www.amazon.com/Arduino-NRF24L01-2-4GHz-Wireless-Transceiver

I *could* assume the end consumer has a usable wifi network, but again, if we are talking about potential uses outside in a big yard or garden, their house-based wifi may not cut it. Also I want to be conscious of security so having my own send and receive function that does not rely on something external means that I don't expose anything outside of the devices themselves.

**** Something that keeps coming up for this project is that an Arduino is likely to be a much better option for running the sensors and sending the information to the central station (which could be the Raspberry Pi). The Arduino has a significantly lower power draw (A solar panel to run a single RPi for 24 hours a day would cost upwards of 150$ - not realistic for a distributed monitoring system!) and it can do the analog sensor readings natively which removes cost from the sensor package in the form of the MCP3008 chip I need to do analog conversions for the digital-only RPi. It is definitely something I will have to explore as I go into the next phase of the project. A very nice writeup on running a solar Raspberry Pi is here: http://www.voltaicsystems.com/blog/powering-a-raspberry-pi-from-solar-power/

The same site has a number of other write ups and important power consumption info for solar-based projects.

-- Check out the companion video to this blog post: On YouTube, here, along with the rest of the video series for this project. --

More Stories By Christopher Harrold

As an Agent of IT Transformation, I have over 20 years experience in the field. Started off as the IT Ops guy and followed the trends of the DevOps movement wherever I went. I want to shake up accepted ways of thinking and develop new models and designs that push the boundaries of technology and of the accepted status quo. There is no greater reward for me than seeing something that was once dismissed as "impossible" become the new normal, and I have been richly rewarded throughout my career with this result. In my last role as CTO at EMC Corporation, I was working tirelessly with a small group of engineers and product managers to build a market leading, innovative platform for data analytics. Combining best of breed storage, analytics and visualization solutions that enables the Data as a Service model for enterprise and mid sized companies globally.

IoT & Smart Cities Stories
All in Mobile is a place where we continually maximize their impact by fostering understanding, empathy, insights, creativity and joy. They believe that a truly useful and desirable mobile app doesn't need the brightest idea or the most advanced technology. A great product begins with understanding people. It's easy to think that customers will love your app, but can you justify it? They make sure your final app is something that users truly want and need. The only way to do this is by ...
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
DXWorldEXPO LLC announced today that Big Data Federation to Exhibit at the 22nd International CloudEXPO, colocated with DevOpsSUMMIT and DXWorldEXPO, November 12-13, 2018 in New York City. Big Data Federation, Inc. develops and applies artificial intelligence to predict financial and economic events that matter. The company uncovers patterns and precise drivers of performance and outcomes with the aid of machine-learning algorithms, big data, and fundamental analysis. Their products are deployed...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
CloudEXPO | DevOpsSUMMIT | DXWorldEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
Cell networks have the advantage of long-range communications, reaching an estimated 90% of the world. But cell networks such as 2G, 3G and LTE consume lots of power and were designed for connecting people. They are not optimized for low- or battery-powered devices or for IoT applications with infrequently transmitted data. Cell IoT modules that support narrow-band IoT and 4G cell networks will enable cell connectivity, device management, and app enablement for low-power wide-area network IoT. B...
The hierarchical architecture that distributes "compute" within the network specially at the edge can enable new services by harnessing emerging technologies. But Edge-Compute comes at increased cost that needs to be managed and potentially augmented by creative architecture solutions as there will always a catching-up with the capacity demands. Processing power in smartphones has enhanced YoY and there is increasingly spare compute capacity that can be potentially pooled. Uber has successfully ...
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...