Welcome!

Agile Computing Authors: Yeshim Deniz, Elizabeth White, Stackify Blog, Pat Romanski, Shelly Palmer

Related Topics: @DevOpsSummit, Linux Containers, Agile Computing

@DevOpsSummit: Article

Revisiting the Anatomy of HTTP: Part I | @DevOpsSummit #APM #DevOps #WebPerf

A factor behind the various web/mobile performance initiatives is the fact that end-users’ tolerance for latency has nose-dived

Revisiting the Anatomy of HTTP: Part I
By Arun Kejariwal and Mehdi Daoudi

One of the key driving factors behind the various web/mobile performance initiatives is the fact that end-users’ tolerance for latency has nose-dived. Several studies have been published whereby it has been demonstrated that poor performance routinely impacts the bottom line, viz,. # users, # transactions, etc. Examples studies include this, this and this. There are several sources of performance bottlenecks, viz., but not limited to:

  • Large numbers of redirects
  • Increasing use of images and/or videos without supporting optimizations such as compression and form factor aware content delivery
  • Increasing use of JavaScript
  • Performance tax of using SSL (as discussed here and here)
  • Increasing use of third-party services which, in most cases, become the longest pole from a performance standpoint

Over five years back we had written a blog on the anatomy of HTTP. In the Internet era, five years is a long time. There has been a sea change across the board and hence we thought it was time to revisit the subject for the benefit of the community as a whole. The figure below shows the key components of a HTTP request.

Besides the independent components, key composite metrics are also annotated in the figure and are defined below.

Time to First Byte (TTFB): The time it took from the request being issued to receiving the first byte of data from the primary URL for the test(s). This is calculated as DNS + Connect + Send + Wait. For tests where the primary URL has a redirect chain, TTFB is calculated as the sum of the TTFB for each domain in the redirect chain.

Response: The time it took from the request being issued to the primary host server responding with the last byte of the primary URL of the test(s). For tests where the primary URL has a redirect chain, Response is calculated as the sum of the response time for each domain in the redirect chain.

Server Response: The time it took from when DNS was resolved to the server responding with the last byte of the primary URL of the test(s). This shows the server’s response exclusive of DNS times. For tests where the primary URL has a redirect chain, Server Response is calculated as the response time for each domain in the redirect chain minus the DNS time.

A plot from an example test illustrating the aforementioned metrics is show below:

Anomalies in any metric can be viewed and detected via Catchpoint’s portal in a very straightforward fashion. An example illustrating an anomaly in TWait is shown below:

Other composite metrics of interest include:

Render Start: The time it took the browser to start rendering the page.

Document Complete: Indicates that the browser has finished rendering the page. In Chrome it is equivalent to the browser onload event. In IE it occurs just before onload is fired and is triggered when the document readyState changes to “complete.”

Webpage Response: The time it took from the request being issued to receiving the last byte of the final element on the page.

  • For Web tests, the agent will wait for up to two seconds after Document Complete for no network activity to end the test
  • Webpage Response is impacted by script verbs for Transaction tests
  • For Object monitor tests, this value is equivalent to Response

Client Time: The time spent executing Javascript and CSS in the browser. Equal to the Webpage Response minus Wire Time

Wire Time: The time the agent took loading network requests. Equal to Webpage Response minus Client Time.

Content Load: The time it took to load the entire content of the webpage after connection was established with the server for the primary URL of the test(s), this is the time elapsed between the end of Send until the final element, or object, on the page is loaded. Content Load does not include the DNS, Connect, Send, and SSL time on the primary URL (or any redirects of the primary URL). For Object monitor tests, this value is equivalent to Load.

In the context of mobile performance, a key metric which is very often the target of optimization is Above-The-Fold (ATF) time. The importance of ATF stems from the fact that while the user is interpreting the first page of content, the rest of the page can be delivered progressively in the background. A threshold of one second is often used as the target for ATF. Practically, after subtracting the network latency, the performance budget is about 400 milliseconds for the following: server must render the response, client-side application code must execute, and the browser must layout and render the content. For recommendations on how to optimize mobile websites, the reader is referred to this and this.

A key difference between the figure above and the corresponding figure in the previous blog is the presence of the TSSL component. Unencrypted communication – via HTTP and other protocols – is susceptible to interception, manipulation, and impersonation, and can potentially reveal users’ credentials, history, identity, and other sensitive information. In the post-Snowden era, privacy has been in limelight. Leading companies such as Google, Microsoft, Apple, and Yahoo have embraced HTTPS for most of their services and have also encrypted their traffic between their data centers. Delivering data over HTTPS has the following benefits:

  • HTTPS protects the integrity of the website by preventing intruders from tampering with exchanged data, e.g., rewriting content, injecting unwanted and malicious content, and so on.
  • HTTPS protects the privacy and security of the user by preventing intruders from listening in on the exchanged data. Each unencrypted request can potentially reveal sensitive information about the user, and when such data is aggregated across many sessions, can be used to de-anonymize identities and reveal other sensitive information. All browsing activity, as far as the user is concerned, should be considered private and sensitive.
  • HTTPS enables powerful features on the web such as accessing users’ geolocation, taking pictures, recording video, enabling offline app experiences, and more, requiring explicit user opt-in that, in turn, requires HTTPS.

When the SSL protocol was standardized by the IETF, it was renamed to Transport Layer Security (TLS). TLS was designed to operate on top of a reliable transport protocol such as TCP. The TLS protocol is designed to provide the following three essential services to all applications running above it:

  • Encryption: A mechanism to obfuscate what is sent from one host to another
  • Authentication: A mechanism to verify the validity of provided identification material
  • Integrity: A mechanism to detect message tampering and forgery

Technically, one is not required to use all three in every situation. For instance, one may decide to accept a certificate without validating its authenticity; having said that, one should be well aware of the security risks and implications of doing so. In practice, a secure web application will leverage all three services.

In order to establish a cryptographically secure data channel, both the sender and receiver of a connection must agree on which ciphersuites will be used and the keys used to encrypt the data. The TLS protocol specifies a well-defined handshake sequence (illustrated below) to perform this exchange.

TLS Handshake. Note that the figure assumes the same (optimistic) 28 millisecond one-way “light in fiber” delay between New York and London. (source: click here)

As part of the TLS handshake, the protocol allows both the sender and the receiver to authenticate their identities. When used in the browser, this authentication mechanism allows the client to verify that the server is who it claims to be (e.g., a payment website) and not someone simply pretending to be the destination by spoofing its name or IP address. Likewise, the server can also optionally verify the identity of the client — e.g., a company proxy server can authenticate all employees, each of whom could have their own unique certificate signed by the company. Finally, the TLS protocol also provides its own message framing mechanism and signs each message with a message authentication code (MAC). The MAC algorithm is a one-way cryptographic hash function (effectively a checksum), the keys to which are negotiated by both the sender and the receiver. Whenever a TLS record is sent, a MAC value is generated and appended for that message, and the receiver is then able to compute and verify the sent MAC value to ensure message integrity and authenticity.

From the figure above we note that TLS connections require two roundtrips for a “full handshake” and thus have an adverse impact on performance. The plot below illustrates the comparative Avg TSSL (the data was obtained via Catchpoint) for the major airlines:

However, in practice, optimized deployments can do much better and deliver a consistent 1-RTT TLS handshake. In particular:

  • False Start – a TLS protocol extension – can be used to allow the client and server to start transmitting encrypted application data when the handshake is only partially complete - i.e., onceChangeCipherSpec and Finished messages are sent, but without waiting for the other side to do the same. This optimization reduces handshake overhead for new TLS connections to one round trip.
  • If the client has previously communicated with the server, then an “abbreviated handshake” can be used, which requires one roundtrip and also allows the client and server to reduce the CPU overhead by reusing the previously negotiated parameters for the secure session.

The combination of both of the above optimizations allows us to deliver a consistent 1-RTT TLS handshake for new and returning visitors and facilitates computational savings for sessions that can be resumed based on previously negotiated session parameters. Other ways to minimize the performance impact of HTTPS include:

  • Use of HTTP Strict Transport Security (HSTS) that restricts web browsers to access web servers solely over HTTPS. This mitigates performance impact by eliminating unnecessary HTTP-to-HTTPS redirects. This responsibility is shifted to the client which will automatically rewrite all links to HTTPS.
  • Early Termination helps minimize latency due to TLS handshake.
  • Use of compression algorithms such as HPACK, Brotli.

For further discussion on SSL/TLS, the reader is referred to the paper titled, “Anatomy and Performance of SSL Processing” by Zhao et al. and the paper titled, “Analysis and Comparison of Several Algorithms in SSL/TLS Handshake Protocol” by Qing and Yaping.

The post Revisiting the Anatomy of HTTP: Part I appeared first on Catchpoint's Blog.

More Stories By Mehdi Daoudi

Catchpoint radically transforms the way businesses manage, monitor, and test the performance of online applications. Truly understand and improve user experience with clear visibility into complex, distributed online systems.

Founded in 2008 by four DoubleClick / Google executives with a passion for speed, reliability and overall better online experiences, Catchpoint has now become the most innovative provider of web performance testing and monitoring solutions. We are a team with expertise in designing, building, operating, scaling and monitoring highly transactional Internet services used by thousands of companies and impacting the experience of millions of users. Catchpoint is funded by top-tier venture capital firm, Battery Ventures, which has invested in category leaders such as Akamai, Omniture (Adobe Systems), Optimizely, Tealium, BazaarVoice, Marketo and many more.

@ThingsExpo Stories
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...