Welcome!

Agile Computing Authors: Liz McMillan, Pat Romanski, Elizabeth White, Dana Gardner, Andy Thurai

Related Topics: Cloud Security, Java IoT, Microservices Expo, Linux Containers, Agile Computing, SDN Journal

Cloud Security: Article

Security Threats Continue to Grow

How Big Data and Machine Learning Can Work Together to Solve Security Threats

They read like a list of horror stories for businesses big and small alike. Sony’s PlayStation Network is hacked twice, exposing the personal information of 77 million customers. Zappos becomes the victim of a hack that exposes the addresses and phone numbers of 24 million people. Up to 81 million Yahoo email customers’ passwords are compromised, forcing the company to tell its users to reset them immediately. 110 million customers are affected when hackers infiltrate Target, and PIN numbers and credit card information are stolen. But these stories of major security breaches aren’t works of fiction--they actually happened, and it’s a concern businesses all over the world live with. Many companies are now turning to big data and machine learning as a way to tackle these risks and make sure valuable data is protected at all times.

Dealing with IT security issues is certainly nothing new for businesses. Computer viruses, malware, worms, and other threats have been around for a while, forcing companies to come up with solutions to either eliminate them or minimize the damages they cause. Much of this approach has been reactive in nature, essentially identifying a new threat or tactic hackers are using and developing the means to fight it. Older security systems had to search through smaller clusters of data to identify patterns that might indicate an attack, but the systems required significant resources and time to work, and even then their success rate was hit-and-miss. Systems were usually finding themselves being left behind by would-be attackers, forced to play catch-up in a game with a lot at stake.

With the growth of big data, data security has become even more complex and difficult to manage. More and more data is being created around the world, and trying to sort through all of it to identify security risks would tax older systems immensely. With new solutions desperately needed, many experts turned to machine learning. In simple terms, machine learning is a system that performs certain tasks by continuously learning from data without the need for specific programming. Machine learning can be used to detect security threats by sorting through all that data, something that simply wasn’t possible to that extent several years ago. Unlike traditional systems, which can get bogged down the more data they have to sort through, machine learning can actually get better if more data is added.

The way machine learning is able to detect security threats is by going through the data and identifying the signs and code that point to potential risks. This in turn creates a profile of what to look for, allowing machine learning and security systems to be able to predict and act on threats before they even happen. Essentially, machine learning can be used for security in much the same way it is used for advertising and marketing, targeting certain features it has determined through pattern recognition and using behavioral analytics to make more accurate predictions. This analysis is not only able to capture the hard data involved in security risks, it captures the context of risky events and can connect the relationships of those events to better understand just how threatening the risk actually is. This entire process takes less time than traditional systems and does not slow down productivity.

Threat detection through machine learning and big data was once out of reach for smaller businesses due to cost concerns and personnel requirements, but as these technologies have matured, smaller operations are now getting more access through big data cloud technology. The advances in recent years makes the utilization of machine learning possible for smaller security teams. In fact, security threat detection through machine learning is more of a hands-off process since machine learning systems undergo training on their own. The system is always learning, populating training sets to always get better at detecting security risks, even if they are new. The processing power and storage capabilities needed for machine learning are also within reach for small businesses thanks to advances in flash storage. The growing adaptability for companies makes security more robust and predictive instead of reactive.

There will never be a way to completely eliminate all security threats. Hackers and malware artists will always be looking for news ways to infiltrate and steal corporate information. But with a better understanding of the ways big data and machine learning can work together toward addressing this common problem, security breaches will be rarer and not as painful as those that have happened in recent years. A more secure future is definitely possible through machine learning.

More Stories By Gil Allouche

Gil Allouche is the Vice President of Marketing at Qubole. Most recently Sr. Director of Marketing for Karmasphere, a leading Big Data Analytics company offering SQL access to Apache Hadoop, where he managed all marketing functions, Gil brings a keen understanding of the Big Data target market and its technologies and buyers. Prior to Karmasphere, Gil was a product marketing manager and general manager for the TIBCO Silver Spotfire SaaS offering where he developed and executed go-to-market plans that increased growth by 600 percent in just 18 months. Gil also co-founded 1Yell, a social media ad network company. Gil began his marketing career as a product strategist at SAP while earning his MBA at Babson College and is a former software engineer.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...