Welcome!

Agile Computing Authors: Liz McMillan, Pat Romanski, Elizabeth White, Dana Gardner, Andy Thurai

Related Topics: Containers Expo Blog, Microservices Expo, Microsoft Cloud, Linux Containers, Cloud Security, SDN Journal

Containers Expo Blog: Article

Data Efficiency at Scale

Overcoming limitations in data efficiency features

The initial wave of data efficiency features for primary storage focus on silos of information organized in terms of individual file systems. Deduplication and compression features provided by some vendors are limited by the scalability of those underlying file systems, essentially the file systems have become silos of optimized data. For example, NetApp deduplication can't scale beyond a 100 TB limit, because that's the limit in size of its WAFL file system. But ask anyone who's ever used NetApp deduplication if they've done it on a 100 TB file system, and you're likely to hear "are you crazy?" It's one thing to claim that data efficiency features can scale, quite a different one to actually use them with performance at scale.

Challenges around scalability generally center on two areas: scalability of random IO and memory overhead. Older solutions, like the one from NetApp, face the first challenge while newer flash-based storage systems are struggling with the second. I'll review both here:

The IO Challenge
Primary data-oriented storage devices handle both streaming and random throughput and therefore are sensitive to latency effects. Data efficiency requirements for primary storage must have fast hashing techniques to reduce the impact of latency. Fast hashes are non-cryptographic in nature and so require data comparison when used to do deduplication. It works like this:

  1. When a new chunk of data is read in it is first given a name using the hash algorithm.
  2. The system then checks a deduplication index to see if a chunk with that name has been seen before (note that this can consume disk IO and tremendous amounts of memory if done wrong).
  3. If the name has been seen we need to take extra steps. Because fast hashes are non-cryptographic, it is possible to have a name match while the data content differs. This is known in computer science as a hash-collision. To account for this, the existing copy of the chunk must be read in and compared bit-by-bit to the new. If they match, only a reference to the chunk is created. If not, then the new chunk must be written.

Essentially, this form of deduplication means trading a write of a duplicate chunk for a read. Depending on the design of the underlying block virtualization layer, duplicate chunks may be widely dispersed throughout the system. In that case, the bigger the system gets, the more expensive reads get - so processing of duplicate data becomes slower and slower as the storage system fills - this is why you won't find many 100 TB NetApp file systems with deduplication turned on. Certainly not for primary storage applications, the system would be flooded with random read requests and NetApp's deduplication process can end up taking months, years or even never complete.

A number of techniques have been used to reduce the impact of IO in other products. For example, the Hitachi NAS (HNAS) and Hitachi Unified Storage (HUS) solutions from HDS make use of hardware-acceleration to generate cryptographically secure hashes that do not require a data compare at all - this allows for linear scaling of deduplication performance on volumes up to 256 TB in size. Data is also written out before it is deduplicated to avoid introducing any latency through the hash computation process itself.

Permabit's own Albireo Virtual Data Optimizer (VDO) product, a plug-in module for Linux-based storage solutions, takes a different approach but with a similar result. VDO works inline to provide immediate data reduction. When data is written out, the VDO process intelligently lays it out in a sequential pattern, so that subsequent read compares of duplicates are more likely to be sequential as well. Both solutions do a fine job at solving the problem in real world scenarios, they just take different approaches.

The Memory Challenge
Many of today's flash array vendors are providing deduplication using similar fast hashing techniques to what I outlined above. With flash, the cost of doing random reads for read compares is a non-issue (random seeks on flash are much less expensive than for hard drive environments) so the use of the fast hash alone is enough to minimize latency. These systems (such as EMC's recently launched XtremIO product) are focused on delivering performance and the big challenge to performance at scale is available memory (DRAM). As above, after chunks are read in, they are named using a fast hashing algorithm. After that, the flash system must determine whether or not a chunk has been seen before. To get at this information as quickly as possible, flash-based storage systems have tended to use huge amounts of DRAM to cache chunk names in memory. It's not uncommon to see flash storage systems that allocate 16 GB of working cache per TB of storage. To support a 256 TB storage volume, such a system would require a TBs of DRAM. The increased hard costs in terms of more expensive (denser) DIMMS, as well as the increased cost of the server board required to support this many DIMMs combine to make this an extremely costly and unpopular proposition. Combine this with the fact that DRAM prices are not falling at the same rate as flash prices, and you can see why no vendor today makes a 256TB flash storage array with global deduplication capabilities.

The solution to the memory challenge is coming, in the form of a next generation of flash storage products that utilize Albireo indexing and Albireo VDO. Unlike the flash arrays described above, flash-optimized arrays with VDO takes advantage of advanced caching techniques to operate with 128 MB of working cache per TB of storage and deliver excellent performance. With VDO, a 256 TB system can be delivered with as little as 32 GB of RAM while delivering 1M IOPS performance. The net result is a cost effective and easily deployed data efficiency solution for flash arrays.

Conclusion

Deduplication Scalability by Vendor

As you can see in the table above, forward thinking vendors like HDS have done a good job at overcoming limitations in their data efficiency features and have products on the market today that can scale to meet the requirements of the large enterprise. Many other vendors are lagging behind, because of their inability to address IO and/or memory requirements, a serious downfall since data efficiency is at the core of distinguishing storage solutions, a critical end user requirement, and a ‘must have' component for 2014. Permabit's VDO product overcomes both of these limitations through the use of advanced memory-efficient caching techniques.

More Stories By Louis Imershein

As Senior Director of Product Strategy at Permabit Technology Corporation, Louis Imershein is responsible for product evolution and strategic planning for the Albireo family of products. He has 22 years of technical leadership experience in product management, software development and support. Prior to joining Permabit, Imershein was a Senior Product Marketing Manager for the Sun Microsystems Data Management Group. He has a Bachelor's degree in Biological Science from the University of California, Santa Cruz.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...