Welcome!

Web 2.0 Authors: Elizabeth White, Liz McMillan, Plutora Blog, Jnan Dash, Aria Blog

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, Big Data Journal, SDN Journal

Cloud Expo: Article

Can We Finally Find the Database Holy Grail? | Part 3

With the advent of Durable Distributed Cache architectures organizations can build global systems with transactional semantics

In my first post in this three part series I talked about the need for distributed transactional databases that scale-out horizontally across commodity machines, as compared to traditional transactional databases that employ a "scale-up" design.  Simply adding more machines is a quicker, cheaper and more flexible way of increasing database capacity than forklift upgrades to giant steam-belching servers. It also brings the promise of continuous availability and of geo-distributed operation.

The second post in this series provided an overview of the three historical approaches to designing distributed transactional database systems, namely: 1. Shared Disk Designs (e.g., ORACLE RAC); 2. Shared Nothing Designs (e.g. the Facebook MySQL implementation); and 3) Synchronous Commit Designs (e.g. GOOGLE F1).  All of them have some advantages over traditional client-server database systems, but they each have serious limitations in relation to cost, complexity, dependencies on specialized infrastructure, and workload-specific performance trade-offs. I noted that we are very excited about a recent innovation in distributed database design, introduced by NuoDB's technical founder Jim Starkey.  We call the concept Durable Distributed Cache (DDC), and I want to spend a little time in this third and final post talking about what it is, with a high-level overview of how it works.

Memory-Centric vs. Storage-Centric
The first insight Jim had was that all general-purpose relational databases to-date have been architected around a storage-centric assumption, and that this is a fundamental problem when it comes to scaling out.  In effect, database systems have been fancy file systems that arrange for concurrent read/write access to disk-based files such that users do not trample on each other.  The Durable Distributed Cache architecture inverts that idea, imagining the database as a set of in-memory container objects that can overflow to disk if necessary, and can be retained in backing stores for durability purposes.  Memory-Centric vs. Storage-Centric may sound like splitting hairs, but it turns out that it is really significant.  The reasons are best described by example.

Suppose you have a single, logical DDC database running on 50 servers (which is absolutely feasible to do with an ACID transactional DDC-based database).  And suppose that at some moment server 23 needs object #17.  In this case, server 23 might determine that object #17 is instantiated in memory on seven other servers.  It simply requests the object from the most responsive server.  Note that as the object was in memory, the operation involved no disk IO - it was a remote memory fetch, which is orders of magnitude faster than going to disk.

You might ask about the case in which object #17 does not exist in memory elsewhere.  In the Durable Distributed Cache architecture this is handled by certain servers "faking" that they have all the objects in memory.  In practice, of course, they are maintaining backing stores on disk, SSD or whatever they choose (in the NuoDB implementation they can use arbitrary Key/Value stores such as Amazon S3 or Hadoop HDFS).  As it relates to supplying objects, these "backing store servers" behave exactly like the other servers except they can't guarantee the same response times.

So all servers in the DDC architecture can request objects and supply objects.  They are peers in that sense (and in all other senses).  Some servers have a subset of the objects at any given time, and can therefore only supply a subset of the database to other servers.  Other servers have all the objects and can supply any of them, but will be slower to supply objects that are not resident in memory.

Let's call the servers with a subset of the objects Transaction Engines (TEs), and the other servers Storage Managers (SMs).  TEs are pure in memory servers that do not need to use disks.  They are autonomous and can unilaterally load and eject objects from memory according to their needs.  Unlike TEs, SMs can't just drop objects on the floor when they are finished with them; instead they must ensure they are safely placed in durable storage.

For readers familiar with caching architectures, you might have already recognized that these TEs are in effect a distributed DRAM cache, and the SMs are specialized TEs that ensure durability.  Hence the name Durable Distributed Cache.

Resilience to Failure
It turns out that any object state that is present on a TE is either already committed to the disk (i.e. safe on one or more SMs) or part of an uncommitted transaction that will simply fail at application level if the object goes away. This means that the database has the interesting property of being resilient to the loss of TEs.  You can shut a TE down or just unplug it and the system does not lose data.  It will lose throughput capacity of course, and any partial transactions on the TE will be reported to the application as failed transactions.  But transactional applications are designed to handle transaction failure. If you reissue the transaction at the application level it will be assigned to a different TE and will proceed to completion.  So the DDC architecture is resilient to the loss of TEs.

What about SMs?  Recall that you can have as many SMs as you like.  They are effectively just TEs that secretly stash away the objects in some durable store.  And, unless you configure it not to, each SM might as well store all the objects. Disks are cheap, which means that you have as many redundant copies of the whole database as you want.  In consequence, the DDC architecture is not only resilient to the loss of TEs, but also to the loss of SMs.

In fact, as long as you have at least one TE and one SM running, you still have a running database.  Resilience to failure is one of the longstanding but unfulfilled promises of distributed transactional databases.  The DDC architecture addresses this directly.

Elastic Scale-out and Scale-in
What happens if I add a server to a DDC database?  Think of the TE layer as a cache.  If the new TE is given work to do, it will start asking for objects and doing the assigned work.  It will also start serving objects to other TEs that need them.  In fact, the new TE is a true peer of the other TEs.  Furthermore, if you were to shut down all of the other TEs, the database would still be running, and the new TE would be the only server doing transactional work.

SMs, being specialized TEs, can also be added and shut down dynamically.  If you add an "empty" (or stale) SM to a running database, it will cycle through the list of objects and load them into its durable store, fetching them from the most responsive place as is usual.  Once it has all the objects, it will raise its hand and take part as a peer to the other SMs.  And, just as with the new TE described above, you can delete all other SMs once you have added the new SM.  The system will keep running without missing a beat or losing any data.

So the bottom line is that the DDC architecture delivers capacity on demand.  You can elastically scale-out the number of TEs and SMs and scale them back in again according to workload requirements.  Capacity on demand is a second promise of distributed databases that is delivered by the DDC architecture.

Geo-Distribution
The astute reader will no doubt be wondering about the hardest part of this distributed database problem -- namely that we are talking about distributed transactional databases.  Transactions, specifically ACID transactions, are an enormously simplifying abstraction that allows application programmers to build their applications with very clean, high-level and well-defined data guarantees.  If I store my data in an ACID transactional database, I know it will isolate my program from other programs, maintain data consistency, avoid partial failure of state changes and guarantee that stored data will still be there at a later date, irrespective of external factors.  Application programs are vastly simpler when they can trust an ACID compliant database to look after their data, whatever the weather.

The DDC architecture adopts a model of append-only updates.  Traditionally, an update to a record in a database overwrites that record, and a deletion of a record removes the record.  That may sound obvious, but there is another way, invented by Jim Starkey about 25 years ago.  The idea is to create and maintain versions of everything.  In this model, you never do a destructive update or destructive delete.  You only ever create new versions of records, and in the case of a delete, the new version is a record version that notes the record is no longer extant.  This model is called MVCC (multi-version concurrency control), and it has a number of well-known benefits, even in scale-up databases.  MVCC has even greater benefits in distributed database architectures, including DDC.

We don't have the space here to cover MVCC in detail, but it is worth noting that one of the things it does is to allow a DBMS to manage read/write concurrency without the use of traditional locks.  For example, readers don't block writers and writers do not block readers.  It also has some exotic features, including that if you wanted to you could theoretically maintain a full history of the entire database.  But as it relates to DDC and the Distributed Transactional Database challenge, there is something very neat about MVCC.  DDC leverages a distributed variety of MVCC in concert with DDC's distributed object semantics that allows almost all the inter-server communications to be asynchronous.

The implications of DDC being asynchronous are very far-reaching.  In general, it allows much higher utilization of system resources (cores, networks, disks, etc.) than synchronous models can.  But specifically, it allows the system to be fairly insensitive to network latencies, and to the location of the servers relative to each other.  Or to put it a different way, it means you can start up your next TE or SM in a remote datacenter and connect it to the running database.  Or you can start up half of the database servers in your datacenter and the other half on a public cloud.

Modern applications are distributed.  Users of a particular web site are usually spread across the globe.  Mobile applications are geo-distributed by nature.  Internet of Things (IoT) applications are connecting gazillions of consumer devices that could be anywhere at any time.  None of these applications are well served by a single big database server in a single location, or even a cluster of smaller database servers in a single location.  What they need is a single database running on a group of database servers in multiple datacenters (or cloud regions).  That can give them higher performance, datacenter failover and the potential to manage issues of data privacy and sovereignty.

The third historical promise of Distributed Transactional Database systems is Geo-Distribution.  Along with the other major promises (Resilience to Failure and Elastic Scalability), Geo-Distribution has heretofore been an unattainable dream.  The DDC architecture, with its memory-centric distributed object model and its asynchronous inter-server protocols, finally delivers on this capability.

In Summary
This short series of posts has sought to provide a quick overview of distributed database designs, with some high level commentary on the advantages and disadvantages of the various approaches.  There has been great historical success with Shared Disk, Shared Nothing and Synchronous Commit models.  We see the advanced technology companies delivering some of the most scalable systems in the world using these distributed database technologies.  But to date, distributed databases have never really delivered anything close to their full promise.  They have also been inaccessible to people and organizations that lack the development and financial resources of GOOGLE or Facebook.

With the advent of DDC architectures, it is now possible for any organization to build global systems with transactional semantics, on-demand capacity and the ability to run for 10 years without missing a beat.  The big promises of Distributed Transactional Databases are Elastic Scalability and Geo-Distribution.  We're very excited that due to Jim Starkey's Durable Distributed Cache, those capabilities are finally being delivered to the industry.

More Stories By Barry Morris

Barry Morris is CEO & Co-Founder of NuoDB, Inc. An accomplished software CEO with over 25 years of industry experience in the USA and Europe, running private and public companies ranging in scale from early startup phase to 1,000+ employees, he loves to build companies around industry-changing paradigm-shifts in technology. Morris was previously CEO of StreamBase and Iona Technologies.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
SYS-CON Media announced that Cisco, a worldwide leader in IT that helps companies seize the opportunities of tomorrow, has launched a new ad campaign in Cloud Computing Journal. The ad campaign, a webcast titled 'Is Your Data Center Ready for the Application Economy?', focuses on the latest data center networking technologies, including SDN or ACI, and how customers are using SDN and ACI in their organizations to achieve business agility. The Cisco webcast is available on-demand.
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...
Dale Kim is the Director of Industry Solutions at MapR. His background includes a variety of technical and management roles at information technology companies. While his experience includes work with relational databases, much of his career pertains to non-relational data in the areas of search, content management, and NoSQL, and includes senior roles in technical marketing, sales engineering, and support engineering. Dale holds an MBA from Santa Clara University, and a BA in Computer Science from the University of California, Berkeley.
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness, and in-car entertainment and this excitement will bleed into other areas. On the commercial side, m...
The Internet of Things (IoT) promises to evolve the way the world does business; however, understanding how to apply it to your company can be a mystery. Most people struggle with understanding the potential business uses or tend to get caught up in the technology, resulting in solutions that fail to meet even minimum business goals. In his session at @ThingsExpo, Jesse Shiah, CEO / President / Co-Founder of AgilePoint Inc., showed what is needed to leverage the IoT to transform your business. He discussed opportunities and challenges ahead for the IoT from a market and technical point of vie...
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
SYS-CON Events announced today that CodeFutures, a leading supplier of database performance tools, has been named a “Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. CodeFutures is an independent software vendor focused on providing tools that deliver database performance tools that increase productivity during database development and increase database performance and scalability during production.
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
“The age of the Internet of Things is upon us,” stated Thomas Svensson, senior vice-president and general manager EMEA, ThingWorx, “and working with forward-thinking companies, such as Elisa, enables us to deploy our leading technology so that customers can profit from complete, end-to-end solutions.” ThingWorx, a PTC® (Nasdaq: PTC) business and Internet of Things (IoT) platform provider, announced on Monday that Elisa, Finnish provider of mobile and fixed broadband subscriptions, will deploy ThingWorx® platform technology to enable a new Elisa IoT service in Finland and Estonia.
Advanced Persistent Threats (APTs) are increasing at an unprecedented rate. The threat landscape of today is drastically different than just a few years ago. Attacks are much more organized and sophisticated. They are harder to detect and even harder to anticipate. In the foreseeable future it's going to get a whole lot harder. Everything you know today will change. Keeping up with this changing landscape is already a daunting task. Your organization needs to use the latest tools, methods and expertise to guard against those threats. But will that be enough? In the foreseeable future attacks w...
As enterprises move to all-IP networks and cloud-based applications, communications service providers (CSPs) – facing increased competition from over-the-top providers delivering content via the Internet and independently of CSPs – must be able to offer seamless cloud-based communication and collaboration solutions that can scale for small, midsize, and large enterprises, as well as public sector organizations, in order to keep and grow market share. The latest version of Oracle Communications Unified Communications Suite gives CSPs the capability to do just that. In addition, its integration ...
SYS-CON Events announced today that ActiveState, the leading independent Cloud Foundry and Docker-based PaaS provider, has been named “Silver Sponsor” of SYS-CON's DevOps Summit New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. ActiveState believes that enterprises gain a competitive advantage when they are able to quickly create, deploy and efficiently manage software solutions that immediately create business value, but they face many challenges that prevent them from doing so. The Company is uniquely positioned to help address these challenges thro...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...