Welcome!

Web 2.0 Authors: Liz McMillan, Carmen Gonzalez, Noel Wurst, Pat Romanski, Trevor Parsons

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, Big Data Journal, SDN Journal

Cloud Expo: Article

Can We Finally Find the Database Holy Grail? | Part 3

With the advent of Durable Distributed Cache architectures organizations can build global systems with transactional semantics

In my first post in this three part series I talked about the need for distributed transactional databases that scale-out horizontally across commodity machines, as compared to traditional transactional databases that employ a "scale-up" design.  Simply adding more machines is a quicker, cheaper and more flexible way of increasing database capacity than forklift upgrades to giant steam-belching servers. It also brings the promise of continuous availability and of geo-distributed operation.

The second post in this series provided an overview of the three historical approaches to designing distributed transactional database systems, namely: 1. Shared Disk Designs (e.g., ORACLE RAC); 2. Shared Nothing Designs (e.g. the Facebook MySQL implementation); and 3) Synchronous Commit Designs (e.g. GOOGLE F1).  All of them have some advantages over traditional client-server database systems, but they each have serious limitations in relation to cost, complexity, dependencies on specialized infrastructure, and workload-specific performance trade-offs. I noted that we are very excited about a recent innovation in distributed database design, introduced by NuoDB's technical founder Jim Starkey.  We call the concept Durable Distributed Cache (DDC), and I want to spend a little time in this third and final post talking about what it is, with a high-level overview of how it works.

Memory-Centric vs. Storage-Centric
The first insight Jim had was that all general-purpose relational databases to-date have been architected around a storage-centric assumption, and that this is a fundamental problem when it comes to scaling out.  In effect, database systems have been fancy file systems that arrange for concurrent read/write access to disk-based files such that users do not trample on each other.  The Durable Distributed Cache architecture inverts that idea, imagining the database as a set of in-memory container objects that can overflow to disk if necessary, and can be retained in backing stores for durability purposes.  Memory-Centric vs. Storage-Centric may sound like splitting hairs, but it turns out that it is really significant.  The reasons are best described by example.

Suppose you have a single, logical DDC database running on 50 servers (which is absolutely feasible to do with an ACID transactional DDC-based database).  And suppose that at some moment server 23 needs object #17.  In this case, server 23 might determine that object #17 is instantiated in memory on seven other servers.  It simply requests the object from the most responsive server.  Note that as the object was in memory, the operation involved no disk IO - it was a remote memory fetch, which is orders of magnitude faster than going to disk.

You might ask about the case in which object #17 does not exist in memory elsewhere.  In the Durable Distributed Cache architecture this is handled by certain servers "faking" that they have all the objects in memory.  In practice, of course, they are maintaining backing stores on disk, SSD or whatever they choose (in the NuoDB implementation they can use arbitrary Key/Value stores such as Amazon S3 or Hadoop HDFS).  As it relates to supplying objects, these "backing store servers" behave exactly like the other servers except they can't guarantee the same response times.

So all servers in the DDC architecture can request objects and supply objects.  They are peers in that sense (and in all other senses).  Some servers have a subset of the objects at any given time, and can therefore only supply a subset of the database to other servers.  Other servers have all the objects and can supply any of them, but will be slower to supply objects that are not resident in memory.

Let's call the servers with a subset of the objects Transaction Engines (TEs), and the other servers Storage Managers (SMs).  TEs are pure in memory servers that do not need to use disks.  They are autonomous and can unilaterally load and eject objects from memory according to their needs.  Unlike TEs, SMs can't just drop objects on the floor when they are finished with them; instead they must ensure they are safely placed in durable storage.

For readers familiar with caching architectures, you might have already recognized that these TEs are in effect a distributed DRAM cache, and the SMs are specialized TEs that ensure durability.  Hence the name Durable Distributed Cache.

Resilience to Failure
It turns out that any object state that is present on a TE is either already committed to the disk (i.e. safe on one or more SMs) or part of an uncommitted transaction that will simply fail at application level if the object goes away. This means that the database has the interesting property of being resilient to the loss of TEs.  You can shut a TE down or just unplug it and the system does not lose data.  It will lose throughput capacity of course, and any partial transactions on the TE will be reported to the application as failed transactions.  But transactional applications are designed to handle transaction failure. If you reissue the transaction at the application level it will be assigned to a different TE and will proceed to completion.  So the DDC architecture is resilient to the loss of TEs.

What about SMs?  Recall that you can have as many SMs as you like.  They are effectively just TEs that secretly stash away the objects in some durable store.  And, unless you configure it not to, each SM might as well store all the objects. Disks are cheap, which means that you have as many redundant copies of the whole database as you want.  In consequence, the DDC architecture is not only resilient to the loss of TEs, but also to the loss of SMs.

In fact, as long as you have at least one TE and one SM running, you still have a running database.  Resilience to failure is one of the longstanding but unfulfilled promises of distributed transactional databases.  The DDC architecture addresses this directly.

Elastic Scale-out and Scale-in
What happens if I add a server to a DDC database?  Think of the TE layer as a cache.  If the new TE is given work to do, it will start asking for objects and doing the assigned work.  It will also start serving objects to other TEs that need them.  In fact, the new TE is a true peer of the other TEs.  Furthermore, if you were to shut down all of the other TEs, the database would still be running, and the new TE would be the only server doing transactional work.

SMs, being specialized TEs, can also be added and shut down dynamically.  If you add an "empty" (or stale) SM to a running database, it will cycle through the list of objects and load them into its durable store, fetching them from the most responsive place as is usual.  Once it has all the objects, it will raise its hand and take part as a peer to the other SMs.  And, just as with the new TE described above, you can delete all other SMs once you have added the new SM.  The system will keep running without missing a beat or losing any data.

So the bottom line is that the DDC architecture delivers capacity on demand.  You can elastically scale-out the number of TEs and SMs and scale them back in again according to workload requirements.  Capacity on demand is a second promise of distributed databases that is delivered by the DDC architecture.

Geo-Distribution
The astute reader will no doubt be wondering about the hardest part of this distributed database problem -- namely that we are talking about distributed transactional databases.  Transactions, specifically ACID transactions, are an enormously simplifying abstraction that allows application programmers to build their applications with very clean, high-level and well-defined data guarantees.  If I store my data in an ACID transactional database, I know it will isolate my program from other programs, maintain data consistency, avoid partial failure of state changes and guarantee that stored data will still be there at a later date, irrespective of external factors.  Application programs are vastly simpler when they can trust an ACID compliant database to look after their data, whatever the weather.

The DDC architecture adopts a model of append-only updates.  Traditionally, an update to a record in a database overwrites that record, and a deletion of a record removes the record.  That may sound obvious, but there is another way, invented by Jim Starkey about 25 years ago.  The idea is to create and maintain versions of everything.  In this model, you never do a destructive update or destructive delete.  You only ever create new versions of records, and in the case of a delete, the new version is a record version that notes the record is no longer extant.  This model is called MVCC (multi-version concurrency control), and it has a number of well-known benefits, even in scale-up databases.  MVCC has even greater benefits in distributed database architectures, including DDC.

We don't have the space here to cover MVCC in detail, but it is worth noting that one of the things it does is to allow a DBMS to manage read/write concurrency without the use of traditional locks.  For example, readers don't block writers and writers do not block readers.  It also has some exotic features, including that if you wanted to you could theoretically maintain a full history of the entire database.  But as it relates to DDC and the Distributed Transactional Database challenge, there is something very neat about MVCC.  DDC leverages a distributed variety of MVCC in concert with DDC's distributed object semantics that allows almost all the inter-server communications to be asynchronous.

The implications of DDC being asynchronous are very far-reaching.  In general, it allows much higher utilization of system resources (cores, networks, disks, etc.) than synchronous models can.  But specifically, it allows the system to be fairly insensitive to network latencies, and to the location of the servers relative to each other.  Or to put it a different way, it means you can start up your next TE or SM in a remote datacenter and connect it to the running database.  Or you can start up half of the database servers in your datacenter and the other half on a public cloud.

Modern applications are distributed.  Users of a particular web site are usually spread across the globe.  Mobile applications are geo-distributed by nature.  Internet of Things (IoT) applications are connecting gazillions of consumer devices that could be anywhere at any time.  None of these applications are well served by a single big database server in a single location, or even a cluster of smaller database servers in a single location.  What they need is a single database running on a group of database servers in multiple datacenters (or cloud regions).  That can give them higher performance, datacenter failover and the potential to manage issues of data privacy and sovereignty.

The third historical promise of Distributed Transactional Database systems is Geo-Distribution.  Along with the other major promises (Resilience to Failure and Elastic Scalability), Geo-Distribution has heretofore been an unattainable dream.  The DDC architecture, with its memory-centric distributed object model and its asynchronous inter-server protocols, finally delivers on this capability.

In Summary
This short series of posts has sought to provide a quick overview of distributed database designs, with some high level commentary on the advantages and disadvantages of the various approaches.  There has been great historical success with Shared Disk, Shared Nothing and Synchronous Commit models.  We see the advanced technology companies delivering some of the most scalable systems in the world using these distributed database technologies.  But to date, distributed databases have never really delivered anything close to their full promise.  They have also been inaccessible to people and organizations that lack the development and financial resources of GOOGLE or Facebook.

With the advent of DDC architectures, it is now possible for any organization to build global systems with transactional semantics, on-demand capacity and the ability to run for 10 years without missing a beat.  The big promises of Distributed Transactional Databases are Elastic Scalability and Geo-Distribution.  We're very excited that due to Jim Starkey's Durable Distributed Cache, those capabilities are finally being delivered to the industry.

More Stories By Barry Morris

Barry Morris is CEO & Co-Founder of NuoDB, Inc. An accomplished software CEO with over 25 years of industry experience in the USA and Europe, running private and public companies ranging in scale from early startup phase to 1,000+ employees, he loves to build companies around industry-changing paradigm-shifts in technology. Morris was previously CEO of StreamBase and Iona Technologies.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that IDenticard will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. IDenticard™ is the security division of Brady Corp (NYSE: BRC), a $1.5 billion manufacturer of identification products. We have small-company values with the strength and stability of a major corporation. IDenticard offers local sales, support and service to our customers across the United States and Canada. Our partner network encompasses some 300 of the world's leading systems integrators and security s...
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

The BPM world is going through some evolution or changes where traditional business process management solutions really have nowhere to go in terms of development of the road map. In this demo at 15th Cloud Expo, Kyle Hansen, Director of Professional Services at AgilePoint, shows AgilePoint’s unique approach to dealing with this market circumstance by developing a rapid application composition or development framework.
"BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Nigeria has the largest economy in Africa, at more than US$500 billion, and ranks 23rd in the world. A recent re-evaluation of Nigeria's true economic size doubled the previous estimate, and brought it well ahead of South Africa, which is a member (unlike Nigeria) of the G20 club for political as well as economic reasons. Nigeria's economy can be said to be quite diverse from one point of view, but heavily dependent on oil and gas at the same time. Oil and natural gas account for about 15% of Nigera's overall economy, but traditionally represent more than 90% of the country's exports and as...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
"At our booth we are showing how to provide trust in the Internet of Things. Trust is where everything starts to become secure and trustworthy. Now with the scaling of the Internet of Things it becomes an interesting question – I've heard numbers from 200 billion devices next year up to a trillion in the next 10 to 15 years," explained Johannes Lintzen, Vice President of Sales at Utimaco, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Code Halos - aka "digital fingerprints" - are the key organizing principle to understand a) how dumb things become smart and b) how to monetize this dynamic. In his session at @ThingsExpo, Robert Brown, AVP, Center for the Future of Work at Cognizant Technology Solutions, outlined research, analysis and recommendations from his recently published book on this phenomena on the way leading edge organizations like GE and Disney are unlocking the Internet of Things opportunity and what steps your organization should be taking to position itself for the next platform of digital competition.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal Systems Group, discussed how key attributes of mobile technology – touch input, sensors, social, and ...