Click here to close now.

Welcome!

Web 2.0 Authors: Pat Romanski, Elizabeth White, Liz McMillan, Carmen Gonzalez, AppDynamics Blog

Related Topics: Java, Microservices Journal, AJAX & REA, Web 2.0, Oracle, Security, SDN Journal

Java: Article

Java Cryptography | Part 3

Decryption and verifying signatures

After you have secured your private electronic information using encryption and learned how to encrypt and digitally sign files for others, how do you extract the information and determine who encrypted the file? Asymmetric public/private key encryption allows you to decipher the information and verify the accompanying digital signature if it exists.

This article illustrates how to decrypt and verify the digital signature on files encrypted using a hybrid combination of asymmetric public/private key encryption and symmetric encryption. A symmetric key is used to encrypt the file and the asymmetric public key encrypts the symmetric key. The asymmetric private key decrypts the symmetric key which in turn is used to decrypt the encrypted file.

Figure1: Asymmetric Key Encryption Functions

The same pair of keys can be used with digital signatures. The private key is used to sign a file and generate a digital signature. The public key is used to verify the authenticity of the signature.

Figure 2: Asymmetric Key Signature Functions

The decryption technique requires the Java libraries developed by the Legion of the Bouncy Castle (www.bouncycastle.org). The Bouncy Castle jars, bcprov-jdk15on-147.jar and bcpkix-jdk15on-147.jar, contains all the methods required to encrypt, decrypt, sign and verify a digital signature. The following Java code snippet loads the BouncyCastle provider, which implements the Java Cryptography Security services such as algorithms and key generation.

import org.bouncycastle.jce.provider.*;
java.security.Security.addProvider(new BouncyCastleProvider());

Decryption for Files or Java Objects
Once a file has been encrypted and/or signed using the DocuArmor application, it can be deciphered by the owner of the matching asymmetric private key. The process involves reading the header, extracting the symmetric key and deciphering the appended encrypted data. The following steps along with the Java code snippets illustrate the process used to decrypt an encrypted file.

Step 1: Assume you want to decrypt the encrypted file, C:\sampleFile.txt.jxdoe_nnnn.asg and the String variable, tUniqueAlias = "jxdoe_nnnn", holds the alias associated to the encrypted file. Read the header from the encrypted file and determine decrypted output name.

File tSrcFile = new File("C:\\sampleFile.txt." + tUniqueAlias + ".aes");
String tDecryptFile = tSrcFile.getName();
tDecryptFile = tDecryptFile.substring(0, tDecryptFile.lastIndexOf('.'));
tDecryptFile = tDecryptFile.substring(0, tDecryptFile.lastIndexOf('.'));
OutputStream tFileOStream = new FileOutputStream(tDecryptFile);
DataInputStream tDInStream =
new DataInputStream(new FileInputStream(tSrcFile));
Object tRC = CryptoHeader.readHeader(tDInStream);
CryptoHeader tHead = (CryptoHeader)tRC;

Step 2: The private key is stored in a Java key store and is password protected. Load the key store using your password. Retrieve the asymmetric private key from the key store using the same password. The asymmetric private key will be used to decrypt the symmetric key.

FileInputStream tFIStream = new FileInputStream("C:\\jxdoe_nnnn.jks");
KeyStore tMyKStore = KeyStore.getInstance("JKS", "SUN");
char[] tPW = "password".toCharArray();
tMyKStore.load(tFIStream, tPW);
PrivateKey tPrivKey = (PrivateKey)tMyKStore.getKey("jxdoe_nnnn", tPW);

Figure 3: Private Key

Step 3: Generate a Java Cipher object using the asymmetric private key and set its mode to "Cipher.UNWRAP_MODE".

Cipher tCipherRSA = Cipher.getInstance("RSA", "BC");
tCipherRSA.init(Cipher.UNWRAP_MODE, (PrivateKey)tPrivKey);

Step 4: Use the Java Cipher and asymmetric private key to unwrap the symmetric key. It's located in the header at the instance variable, wrappedSymKey or wrappedSymKeyOther, along with symmetric algorithm at symKeyAlgDesc. The symmetric key will be used to decrypt the file.

String tAlg = tHead.symKeyAlgDesc();
Key tSymmetricKey =
tCipherRSA.unwrap(tHead.wrappedSymKey(),tAlg, Cipher.SECRET_KEY);

Figure 4: Unwrap Symmetric Key

Step 5: Re-initialize the same Cipher to Cipher.DECRYPT_MODE. Use the Cipher and the asymmetric private key to decrypt the initialization vector stored within the header at the instance variable initVector or initVectorOther.

tCipher.init(Cipher.DECRYPT_MODE, (PrivateKey)tPrivKey);
byte[] tInitVector = tCipher.doFinal(tHead.initVector());
IvParameterSpec tIvParmSpec = new IvParameterSpec(tInitVector);

Figure 5: Unwrap Initialization Vector

Step 6: Generate a Java Cipher object using the symmetric key and initialization vector and set its mode to "Cipher.DECRYPT_MODE". The string representing the symmetric algorithm, mode and padding can be extracted from the Cryptography header using the "transformation" method.

tCipherDecrypt = Cipher.getInstance("AES/CTR/PKCS7Padding", "BC");
or tCipherDecrypt = Cipher.getInstance(tHead.transformation(), "BC");
tCipherDecrypt.init(Cipher.DECRYPT_MODE, tSymmetricKey, tIvParmSpec);

Step 7: Use the Java Cipher to decrypt the rest of the file to a Java FileOutputStream. The DataInputStream points to the start of the encrypted data after reading the header. The end result is a decrypted file.

byte[] tInBuffer = new byte[4096];
byte[] tOutBuffer = new byte[4096];
int tNumOfBytesRead = tDInStream.read(tInBuffer);
while (tNumOfBytesRead == tInBuffer.length) {
//-Encrypt the input buffer data and store in the output buffer
int tNumOfBytesUpdated =
tCipherDecrypt.update(tInBuffer, 0, tInBuffer.length, tOutBuffer);
tFileOStream.write(tOutBuffer, 0, tNumOfBytesUpdated);
tNumOfBytesRead = tDInStream.read(tInBuffer);
}
//-Process the remaining bytes in the input file.
if (tNumOfBytesRead > 0) {
tOutBuffer = tCipherDecrypt.doFinal(tInBuffer, 0, tNumOfBytesRead);
} else {
tOutBuffer = tCipherDecrypt.doFinal();
}
tFileOStream.write(tOutBuffer, 0, tOutBuffer.length);
tFileOStream.close();

Figure 6: Decipher the Encrypted File

Step 7a: If the encrypted file contains a Java object, use the Java Cipher to decrypt the rest of the file to a Java ByteArrayOutputStream instead of a FileOutputStream. The end result can be converted to an instance of its original Java class.

ByteArrayInputStream tBAIS = new ByteArrayInputStream(tBAOS.toByteArray());  
ObjectInput tOIS = new ObjectInputStream(tBAIS);
Object tObject = tOIS.readObject();  //-Original Java object
tBAOS.close();
tBAIS.close();
tOIS.close();

Alternatively, the same technique can be used to decrypt the encrypted file using the symmetric key that was wrapped with the CA or owner's asymmetric public key. If the file was encrypted for another user, the owner can decrypt it using the additionally wrapped symmetric key. If the file was encrypted for oneself, the CA can decrypt it using the additionally wrapped symmetric key in the enterprise version.

Signature Verification
When a file has been digitally signed with a user's asymmetric private key, the signature is stored in the Cryptography header. The signature can be validated with the user's matching asymmetric public key stored in a certificate. The process involves reading the header, extracting the digital signature and validating it against the rest of the signed file and the asymmetric public key. The following steps describe the process used to verify a digital signature.

Step 1: Assume you want to verify the signature on the encrypted and digitally signed file, "C:\sampleFile.txt.jxdoe_nnnn.asg" and the String variable, tUniqueAlias = "jxdoe_nnnn", holds the alias associated to the file. Read the header from the signed file. After the header is read, keep in mind that the DataInputStream now points to the beginning of the encrypted data.

File tSrcFile = new File("C:\\sampleFile.txt." + tUniqueAlias + ".asg");
DataInputStream tDInStream =
new DataInputStream(new FileInputStream(tSrcFile));
Object tRC = CryptoHeader.readHeader(tDInStream);
CryptoHeader tHead = (CryptoHeader)tRC;
byte[] tCurrSignature = tHead.signature();

Step 2: Retrieve the certificate whose name is stored in the header and contains the asymmetric public key needed for verification. Retrieve the asymmetric public key from the certificate associated with the digital signature.

String tCertName = "C:\\" + tHead.verifySigCertName();
InputStream tInStream = new FileInputStream(tCertName);
CertificateFactory tFactory = CertificateFactory.getInstance("X.509","BC");
X509Certificate tCert =
(X509Certificate)tFactory.generateCertificate(tInStream);
tInStream.close();
PublicKey tPubKey = tCert.getPublicKey();

Figure 7: Extract Public Key

Step 3: Instantiate a Java signature engine and initialize it with the signature algorithm stored in the header and the asymmetric public key. The default value is "SHA512WithRSAEncryption".

Signature tSgnVerifyEngine = null;
String tSigAlg = tHead.signatureAlgDesc();
tSgnVerifyEngine = Signature.getInstance(tSigAlg,"BC");
tSgnVerifyEngine.initVerify(tPubKey);

Step 4: Use the Java signature engine to process the rest of the signed file and calculate a hash number that will be compared with the signature stored in the header.

int tBlockSize = 4096;
byte[] tBuffer = new byte[tBlockSize];
int tLength = tDInStream.read(tBuffer);
while (tLength == tBlockSize) {
tSgnVerifyEngine.update(tBuffer, 0, tBlockSize);
tLength = tDInStream.read(tBuffer);
}

if (tLength > 0) {
tSgnVerifyEngine.update(tBuffer, 0, tLength);
}

Step 5: After the file has been processed, use the Java signature engine to verify its result with the digital signature. A Boolean result is returned on whether the signature was valid.

Boolean tResult = tSgnVerifyEngine.verify(tCurrSignature);

Summary
The article demonstrates how to decrypt and verify the digit signature of and encrypted file using Java Cryptography methods and the Cryptography libraries from Bouncy Castle organization. Using the information provided within the Cryptography header, the user can validate who encrypted its contents and/or decipher the encrypted file. The header also provides the flexibility to expand the usage of Cryptography such as allowing multiple recipients to decrypt a file by using each of their public keys to encrypt the same symmetric key. As society adopts file encryption as a standard way of protection, more creative uses will be invented by future Cyber warriors.

The source code (LaCryptoJarSample.java) is available on the Logical Answers Inc. website under the education web page as an individual file and also within the zip file, laCrypto-4.2.0.zipx.

References and Other Technical Notes
Software requirements:

  • Computer running Windows XP or higher...
  • Java Runtime (JRE V1.7 or higher)

Recommended reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
The Workspace-as-a-Service (WaaS) market will grow to $6.4B by 2018. In his session at 16th Cloud Expo, Seth Bostock, CEO of IndependenceIT, will begin by walking the audience through the evolution of Workspace as-a-Service, where it is now vs. where it going. To look beyond the desktop we must understand exactly what WaaS is, who the users are, and where it is going in the future. IT departments, ISVs and service providers must look to workflow and automation capabilities to adapt to growing demand and the rapidly changing workspace model.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo – to be held June 9-11, 2015, at the Javits Center in New York City, NY – is now accepting Hackathon proposals. Hackathon sponsorship benefits include general brand exposure and increasing engagement with the developer ecosystem. At Cloud Expo 2014 Silicon Valley, IBM held the Bluemix Developer Playground on November 5 and ElasticBox held the DevOps Hackathon on November 6. Both events took place on the expo floor. The Bluemix Developer Playground, for developers of all levels, highlighted the ease of use of...
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
For years, we’ve relied too heavily on individual network functions or simplistic cloud controllers. However, they are no longer enough for today’s modern cloud data center. Businesses need a comprehensive platform architecture in order to deliver a complete networking suite for IoT environment based on OpenStack. In his session at @ThingsExpo, Dhiraj Sehgal from PLUMgrid will discuss what a holistic networking solution should really entail, and how to build a complete platform that is scalable, secure, agile and automated.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Hadoop as a Service (as offered by handful of niche vendors now) is a cloud computing solution that makes medium and large-scale data processing accessible, easy, fast and inexpensive. In his session at Big Data Expo, Kumar Ramamurthy, Vice President and Chief Technologist, EIM & Big Data, at Virtusa, will discuss how this is achieved by eliminating the operational challenges of running Hadoop, so one can focus on business growth. The fragmented Hadoop distribution world and various PaaS solutions that provide a Hadoop flavor either make choices for customers very flexible in the name of opti...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...