Click here to close now.

Welcome!

Web 2.0 Authors: Dana Gardner, Jason Bloomberg, Plutora Blog, Yakov Fain, Pat Romanski

Blog Feed Post

The Hype & Reality of Small Cells Performance

Heterogeneous networks (HetNets) consist of large (macro) cells with high transmit power (typically 5 W – 40 W) and small cells with low transmit power (typically 100 mW – 2 W). The small cells are distributed beneath the large cells and can run on the same frequency as the large cell (co-channel), or on a different frequency. As an evolution of the cellular architecture, HetNets and small cells have gained much attention as a technique to increase mobile network capacity and are today one of the hot topics in the wireless industry. Many of the initial deployments of small cells are of the co-channel type. Standards such as LTE have focused on incorporating techniques to improve the performance of co-channel deployments in earlier releases of the technology standard leaving the handling of multi-frequency deployment type to later releases. In all, operators today have multiple options of small cell deployment scenarios, operational techniques and technology roadmaps to choose from.

 

B1 - Figure 1 Heterogeneous Network Architecture.png

Figure 1 Simplified Heterogeneous Network Architecture.

 

To illustrate some of the deployment issues related to small cells, I will provide in this article a qualitative review of small cell performance and explore their impact on the operator's small cells deployment strategy. The focus is on co-channel deployments which aside from being common in this early stage of HetNet evolution, they provide for a complex radio frequency environment.

 

Throughput Performance: The overall throughput experienced by users on both downlink (base station to the mobile subscriber) and uplink (mobile to base station) paths will generally increase as small cells are deployed. This applies to both users camped on the macro cell and those on the small cells, but for different reasons:

 

  1. The users on the macro cell will benefit as more small cells are added because fewer users will share the common capacity resources. Therefore, the more small cells are added, the better likelihood a user on the macro cell will experience higher throughput; meanwhile,
  2. Users on the small cell will experience better throughput than those on macro cell because of higher probability of line-of-sight connection to the serving base station.

 

If the mobile subscribers are uniformly distributed over the coverage area, then the likelihood a user will experience a certain level of throughput is approximately similar as the number of small cells increases. But in reality, the distribution of users is not uniform as they tend to concentrate in certain "traffic hotspots." In this case, a small cell in a traffic hotspot is expected to provide lower throughput than a small cell in a uniform user distribution area. In the meantime, a user on the macrocell will experience a more pronounced increase in throughput because a higher proportion of users are offloaded from the macro cell. As even more small cells are added, interference will increase leading to successively diminishing marginal increase in throughput.

 

This last note is an important one: small cells are beneficial up to a point. The user experience will be affected by the density of small cells with a diminishing marginal return followed by actual degradation of service as the number of small cells exceeds a certain threshold. When this threshold is reached depends on a number of factors that include the type of technology, morphology, and cell density and distribution. Inter-small cell interference is one factor that limits small cell performance. Another factor is that as we add more small cells, we create more 'cell-edge' regions within the coverage area of macrocells that can also limit performance as I will expand upon below.

 

The throughput performance will depend on the location of the small cells and their proximity to macrocells. A small cells close to a macrocell is more likely to be affected by interference than one located at the cell-edge resulting in lower throughput performance. Correspondingly, the performance will depend on the size of the macrocell, or rather, the macrocell density. Small cells deployed close to the cell edge of a large macrocell will provide better performance than those deployed in high-density macrocell area where the average radius is relatively small.

 

Throughput performance will also depend on the output power of the small cell. Simulations show that for a certain macrocell radius, higher power small cells provide better throughput performance than lower power ones given the same small cell base station density.

 

Nevertheless, the key take away here is this: it pays to find out where the traffic hot spots are as otherwise, the gain achieved from small cells will be small. Small cell deployment would have to be 'surgical' in select areas to achieve the maximum return on investment.

 

Interference and Coverage Performance: While small cells improve performance in general, there are certain situations where they cause interference or even a coverage hole. One decisive factor is the large power imbalance between the small cell and the macrocell. The power imbalance is larger than simply the rated transmit power because macrocells implement high-gain sectored antennas (13-16 dBi) while small cells typically implement a much lower gain omni-directional antenna (3-6 dBi). The power imbalance results in asymmetric downlink and uplink coverage areas. Because the macrocell has much higher power than the small cell, the downlink coverage area of the small cell would be smaller than the uplink coverage area. This shifts the handover boundary closer to the small cell increasing the possibility of uplink interference to the small cell with which the interfering mobile might have a line-of-sight path. This type of interference is potentially very damaging since it affects all the users in a cell and forces the mobile units served by the small cell to transmit at higher power. The power imbalance also increases the risk of downlink interference although this type of interference is more limited because it affects a single user. The uplink-downlink imbalance is a leading reason why LTE Release 8 small cell gain is limited because cell selection is decided by downlink signal strength and the options for interference mitigation are limited.

 

B1 - Figure 2 Small Cell Interference Scenarios.png

Figure 2 Co-channel interference scenarios in small cell deployments.

 

To address the uplink-downlink coverage imbalance, the coverage area of the small cell base station is extended to allow the small cell to capture more traffic. This is accomplished by adding a bias to the small cell received signal during the cell selection process. But extending the small cell coverage also increases the chances of downlink interference to a mobile subscriber operating at the edge of the small cell.

 

Aside from co-channel interference, there's also a risk of adjacent channel interference in multicarrier networks where macrocells implement two or more frequency carriers. Consider for example a mobile attached to a macrocell on frequency A while it is very close to a small cell operating on adjacent frequency B. The mobile is susceptible to adjacent channel interference from the small cell which would likely have a line-of-sight path to the mobile in contrast to a non-line-of-sight connection with the macrocell.  Another example is that for the uplink: a mobile attached to a macrocell and operating from the edge of a small cell on an adjacent frequency could cause interference to the small cell.

 

There are other potential interference scenarios in addition to those described here. But the basic fact is that the actual performance and benefit of small cells will vary, and will do so more widely in the absence of interference mitigation/performance enhancing techniques. This is one reason why some requirements for small cell deployments have been hotly debated, without a firm resolution. For example, a basic requirement is that of small cell backhaul capacity: what should it be? Should the backhaul link be designed to handle the peak throughput rate, which is a function technology, or the average throughput rate which is much harder to ascertain and put a value on because it depends on many factors related to the deployment scenario?

 

Based on the above description, we know that throughput of small cells will depend largely on the load. The more clustered the subscribers, the lower the overall small cell throughput. On the other hand, if there's a light load (few users), then the capacity will be high. If you are an operator, you sure would need to think carefully about the required backhaul capacity! And while we're on the backhaul topic, let's not forget that we also need to make sure that backhaul on the macrocell is dimensioned properly to support higher traffic load which will certainly come as more small cells are deployed.

 

In this post, I went through some aspects of small cell performance.  These problems are well recognized and certain techniques are being developed and integrated into the standards to address them. This raises other important questions to the operator's strategic network planning process, such as: what interference management and performance enhancement features should be considered? And, what is the technology roadmap for these features? I will expand more on some of these techniques in a future blog post.

 

Follow Frank Rayal on Twitter @FrankRayal

Read the original blog entry...

More Stories By Deborah Strickland

The articles presented here are blog posts from members of our Service Provider Mobility community. Deborah Strickland is a Web and Social Media Program Manager at Cisco. Follow us on Twitter @CiscoSPMobility.

@ThingsExpo Stories
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Cloudian, Inc., the leading provider of hybrid cloud storage solutions, today announced availability of Cloudian HyperStore 5.1 software. HyperStore 5.1 is an enhanced Amazon S3-compliant, plug-and-play hybrid cloud software solution that now features full Apache Hadoop integration. Enterprises can now transform big data into smart data by running Hadoop analytics on HyperStore software and appliances. This in-place analytics, with no need to offload data to other systems for Hadoop analyses, enables customers to derive meaningful business intelligence from their data quickly, efficiently and ...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
SYS-CON Events announced today that GENBAND, a leading developer of real time communications software solutions, has been named “Silver Sponsor” of SYS-CON's WebRTC Summit, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. The GENBAND team will be on hand to demonstrate their newest product, Kandy. Kandy is a communications Platform-as-a-Service (PaaS) that enables companies to seamlessly integrate more human communications into their Web and mobile applications - creating more engaging experiences for their customers and boosting collaboration and productiv...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - is now accepting submissions to demo smart cars on the Expo Floor. Smart car sponsorship benefits include general brand exposure and increasing engagement with the developer ecosystem.
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
SYS-CON Events announced today that SoftLayer, an IBM company, has been named “Gold Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015 at the Javits Center in New York City, NY, and the 17th International Cloud Expo®, which will take place November 3–5, 2015 at the Santa Clara Convention Center in Santa Clara, CA. SoftLayer operates a global cloud infrastructure platform built for Internet scale. With a global footprint of data centers and network points of presence, SoftLayer provides infrastructure as a service to leading-edge customers ranging from ...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
SYS-CON Events announced today that Open Data Centers (ODC), a carrier-neutral colocation provider, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Open Data Centers is a carrier-neutral data center operator in New Jersey and New York City offering alternative connectivity options for carriers, service providers and enterprise customers.
The IoT market is projected to be $1.9 trillion tidal wave that’s bigger than the combined market for smartphones, tablets and PCs. While IoT is widely discussed, what not being talked about are the monetization opportunities that are created from ubiquitous connectivity and the ensuing avalanche of data. While we cannot foresee every service that the IoT will enable, we should future-proof operations by preparing to monetize them with extremely agile systems.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. Learn about IoT, Big Data and deployments processing massive data volumes from wearables, utilities and other machines.