Welcome!

Agile Computing Authors: Gregor Petri, AppNeta Blog, Elizabeth White, Liz McMillan, William Schmarzo

Blog Feed Post

The Hype & Reality of Small Cells Performance

Heterogeneous networks (HetNets) consist of large (macro) cells with high transmit power (typically 5 W – 40 W) and small cells with low transmit power (typically 100 mW – 2 W). The small cells are distributed beneath the large cells and can run on the same frequency as the large cell (co-channel), or on a different frequency. As an evolution of the cellular architecture, HetNets and small cells have gained much attention as a technique to increase mobile network capacity and are today one of the hot topics in the wireless industry. Many of the initial deployments of small cells are of the co-channel type. Standards such as LTE have focused on incorporating techniques to improve the performance of co-channel deployments in earlier releases of the technology standard leaving the handling of multi-frequency deployment type to later releases. In all, operators today have multiple options of small cell deployment scenarios, operational techniques and technology roadmaps to choose from.

 

B1 - Figure 1 Heterogeneous Network Architecture.png

Figure 1 Simplified Heterogeneous Network Architecture.

 

To illustrate some of the deployment issues related to small cells, I will provide in this article a qualitative review of small cell performance and explore their impact on the operator's small cells deployment strategy. The focus is on co-channel deployments which aside from being common in this early stage of HetNet evolution, they provide for a complex radio frequency environment.

 

Throughput Performance: The overall throughput experienced by users on both downlink (base station to the mobile subscriber) and uplink (mobile to base station) paths will generally increase as small cells are deployed. This applies to both users camped on the macro cell and those on the small cells, but for different reasons:

 

  1. The users on the macro cell will benefit as more small cells are added because fewer users will share the common capacity resources. Therefore, the more small cells are added, the better likelihood a user on the macro cell will experience higher throughput; meanwhile,
  2. Users on the small cell will experience better throughput than those on macro cell because of higher probability of line-of-sight connection to the serving base station.

 

If the mobile subscribers are uniformly distributed over the coverage area, then the likelihood a user will experience a certain level of throughput is approximately similar as the number of small cells increases. But in reality, the distribution of users is not uniform as they tend to concentrate in certain "traffic hotspots." In this case, a small cell in a traffic hotspot is expected to provide lower throughput than a small cell in a uniform user distribution area. In the meantime, a user on the macrocell will experience a more pronounced increase in throughput because a higher proportion of users are offloaded from the macro cell. As even more small cells are added, interference will increase leading to successively diminishing marginal increase in throughput.

 

This last note is an important one: small cells are beneficial up to a point. The user experience will be affected by the density of small cells with a diminishing marginal return followed by actual degradation of service as the number of small cells exceeds a certain threshold. When this threshold is reached depends on a number of factors that include the type of technology, morphology, and cell density and distribution. Inter-small cell interference is one factor that limits small cell performance. Another factor is that as we add more small cells, we create more 'cell-edge' regions within the coverage area of macrocells that can also limit performance as I will expand upon below.

 

The throughput performance will depend on the location of the small cells and their proximity to macrocells. A small cells close to a macrocell is more likely to be affected by interference than one located at the cell-edge resulting in lower throughput performance. Correspondingly, the performance will depend on the size of the macrocell, or rather, the macrocell density. Small cells deployed close to the cell edge of a large macrocell will provide better performance than those deployed in high-density macrocell area where the average radius is relatively small.

 

Throughput performance will also depend on the output power of the small cell. Simulations show that for a certain macrocell radius, higher power small cells provide better throughput performance than lower power ones given the same small cell base station density.

 

Nevertheless, the key take away here is this: it pays to find out where the traffic hot spots are as otherwise, the gain achieved from small cells will be small. Small cell deployment would have to be 'surgical' in select areas to achieve the maximum return on investment.

 

Interference and Coverage Performance: While small cells improve performance in general, there are certain situations where they cause interference or even a coverage hole. One decisive factor is the large power imbalance between the small cell and the macrocell. The power imbalance is larger than simply the rated transmit power because macrocells implement high-gain sectored antennas (13-16 dBi) while small cells typically implement a much lower gain omni-directional antenna (3-6 dBi). The power imbalance results in asymmetric downlink and uplink coverage areas. Because the macrocell has much higher power than the small cell, the downlink coverage area of the small cell would be smaller than the uplink coverage area. This shifts the handover boundary closer to the small cell increasing the possibility of uplink interference to the small cell with which the interfering mobile might have a line-of-sight path. This type of interference is potentially very damaging since it affects all the users in a cell and forces the mobile units served by the small cell to transmit at higher power. The power imbalance also increases the risk of downlink interference although this type of interference is more limited because it affects a single user. The uplink-downlink imbalance is a leading reason why LTE Release 8 small cell gain is limited because cell selection is decided by downlink signal strength and the options for interference mitigation are limited.

 

B1 - Figure 2 Small Cell Interference Scenarios.png

Figure 2 Co-channel interference scenarios in small cell deployments.

 

To address the uplink-downlink coverage imbalance, the coverage area of the small cell base station is extended to allow the small cell to capture more traffic. This is accomplished by adding a bias to the small cell received signal during the cell selection process. But extending the small cell coverage also increases the chances of downlink interference to a mobile subscriber operating at the edge of the small cell.

 

Aside from co-channel interference, there's also a risk of adjacent channel interference in multicarrier networks where macrocells implement two or more frequency carriers. Consider for example a mobile attached to a macrocell on frequency A while it is very close to a small cell operating on adjacent frequency B. The mobile is susceptible to adjacent channel interference from the small cell which would likely have a line-of-sight path to the mobile in contrast to a non-line-of-sight connection with the macrocell.  Another example is that for the uplink: a mobile attached to a macrocell and operating from the edge of a small cell on an adjacent frequency could cause interference to the small cell.

 

There are other potential interference scenarios in addition to those described here. But the basic fact is that the actual performance and benefit of small cells will vary, and will do so more widely in the absence of interference mitigation/performance enhancing techniques. This is one reason why some requirements for small cell deployments have been hotly debated, without a firm resolution. For example, a basic requirement is that of small cell backhaul capacity: what should it be? Should the backhaul link be designed to handle the peak throughput rate, which is a function technology, or the average throughput rate which is much harder to ascertain and put a value on because it depends on many factors related to the deployment scenario?

 

Based on the above description, we know that throughput of small cells will depend largely on the load. The more clustered the subscribers, the lower the overall small cell throughput. On the other hand, if there's a light load (few users), then the capacity will be high. If you are an operator, you sure would need to think carefully about the required backhaul capacity! And while we're on the backhaul topic, let's not forget that we also need to make sure that backhaul on the macrocell is dimensioned properly to support higher traffic load which will certainly come as more small cells are deployed.

 

In this post, I went through some aspects of small cell performance.  These problems are well recognized and certain techniques are being developed and integrated into the standards to address them. This raises other important questions to the operator's strategic network planning process, such as: what interference management and performance enhancement features should be considered? And, what is the technology roadmap for these features? I will expand more on some of these techniques in a future blog post.

 

Follow Frank Rayal on Twitter @FrankRayal

Read the original blog entry...

More Stories By Deborah Strickland

The articles presented here are blog posts from members of our Service Provider Mobility community. Deborah Strickland is a Web and Social Media Program Manager at Cisco. Follow us on Twitter @CiscoSPMobility.

@ThingsExpo Stories
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
I wanted to gather all of my Internet of Things (IOT) blogs into a single blog (that I could later use with my University of San Francisco (USF) Big Data “MBA” course). However as I started to pull these blogs together, I realized that my IOT discussion lacked a vision; it lacked an end point towards which an organization could drive their IOT envisioning, proof of value, app dev, data engineering and data science efforts. And I think that the IOT end point is really quite simple…
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
Verizon Communications Inc. (NYSE, Nasdaq: VZ) and Yahoo! Inc. (Nasdaq: YHOO) have entered into a definitive agreement under which Verizon will acquire Yahoo's operating business for approximately $4.83 billion in cash, subject to customary closing adjustments. Yahoo informs, connects and entertains a global audience of more than 1 billion monthly active users** -- including 600 million monthly active mobile users*** through its search, communications and digital content products. Yahoo also co...
A critical component of any IoT project is what to do with all the data being generated. This data needs to be captured, processed, structured, and stored in a way to facilitate different kinds of queries. Traditional data warehouse and analytical systems are mature technologies that can be used to handle certain kinds of queries, but they are not always well suited to many problems, particularly when there is a need for real-time insights.
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...