Welcome!

Web 2.0 Authors: Michael Jannery, Liz McMillan, Pat Romanski, Yeshim Deniz, Trevor Parsons

Blog Feed Post

The Hype & Reality of Small Cells Performance

Heterogeneous networks (HetNets) consist of large (macro) cells with high transmit power (typically 5 W – 40 W) and small cells with low transmit power (typically 100 mW – 2 W). The small cells are distributed beneath the large cells and can run on the same frequency as the large cell (co-channel), or on a different frequency. As an evolution of the cellular architecture, HetNets and small cells have gained much attention as a technique to increase mobile network capacity and are today one of the hot topics in the wireless industry. Many of the initial deployments of small cells are of the co-channel type. Standards such as LTE have focused on incorporating techniques to improve the performance of co-channel deployments in earlier releases of the technology standard leaving the handling of multi-frequency deployment type to later releases. In all, operators today have multiple options of small cell deployment scenarios, operational techniques and technology roadmaps to choose from.

 

B1 - Figure 1 Heterogeneous Network Architecture.png

Figure 1 Simplified Heterogeneous Network Architecture.

 

To illustrate some of the deployment issues related to small cells, I will provide in this article a qualitative review of small cell performance and explore their impact on the operator's small cells deployment strategy. The focus is on co-channel deployments which aside from being common in this early stage of HetNet evolution, they provide for a complex radio frequency environment.

 

Throughput Performance: The overall throughput experienced by users on both downlink (base station to the mobile subscriber) and uplink (mobile to base station) paths will generally increase as small cells are deployed. This applies to both users camped on the macro cell and those on the small cells, but for different reasons:

 

  1. The users on the macro cell will benefit as more small cells are added because fewer users will share the common capacity resources. Therefore, the more small cells are added, the better likelihood a user on the macro cell will experience higher throughput; meanwhile,
  2. Users on the small cell will experience better throughput than those on macro cell because of higher probability of line-of-sight connection to the serving base station.

 

If the mobile subscribers are uniformly distributed over the coverage area, then the likelihood a user will experience a certain level of throughput is approximately similar as the number of small cells increases. But in reality, the distribution of users is not uniform as they tend to concentrate in certain "traffic hotspots." In this case, a small cell in a traffic hotspot is expected to provide lower throughput than a small cell in a uniform user distribution area. In the meantime, a user on the macrocell will experience a more pronounced increase in throughput because a higher proportion of users are offloaded from the macro cell. As even more small cells are added, interference will increase leading to successively diminishing marginal increase in throughput.

 

This last note is an important one: small cells are beneficial up to a point. The user experience will be affected by the density of small cells with a diminishing marginal return followed by actual degradation of service as the number of small cells exceeds a certain threshold. When this threshold is reached depends on a number of factors that include the type of technology, morphology, and cell density and distribution. Inter-small cell interference is one factor that limits small cell performance. Another factor is that as we add more small cells, we create more 'cell-edge' regions within the coverage area of macrocells that can also limit performance as I will expand upon below.

 

The throughput performance will depend on the location of the small cells and their proximity to macrocells. A small cells close to a macrocell is more likely to be affected by interference than one located at the cell-edge resulting in lower throughput performance. Correspondingly, the performance will depend on the size of the macrocell, or rather, the macrocell density. Small cells deployed close to the cell edge of a large macrocell will provide better performance than those deployed in high-density macrocell area where the average radius is relatively small.

 

Throughput performance will also depend on the output power of the small cell. Simulations show that for a certain macrocell radius, higher power small cells provide better throughput performance than lower power ones given the same small cell base station density.

 

Nevertheless, the key take away here is this: it pays to find out where the traffic hot spots are as otherwise, the gain achieved from small cells will be small. Small cell deployment would have to be 'surgical' in select areas to achieve the maximum return on investment.

 

Interference and Coverage Performance: While small cells improve performance in general, there are certain situations where they cause interference or even a coverage hole. One decisive factor is the large power imbalance between the small cell and the macrocell. The power imbalance is larger than simply the rated transmit power because macrocells implement high-gain sectored antennas (13-16 dBi) while small cells typically implement a much lower gain omni-directional antenna (3-6 dBi). The power imbalance results in asymmetric downlink and uplink coverage areas. Because the macrocell has much higher power than the small cell, the downlink coverage area of the small cell would be smaller than the uplink coverage area. This shifts the handover boundary closer to the small cell increasing the possibility of uplink interference to the small cell with which the interfering mobile might have a line-of-sight path. This type of interference is potentially very damaging since it affects all the users in a cell and forces the mobile units served by the small cell to transmit at higher power. The power imbalance also increases the risk of downlink interference although this type of interference is more limited because it affects a single user. The uplink-downlink imbalance is a leading reason why LTE Release 8 small cell gain is limited because cell selection is decided by downlink signal strength and the options for interference mitigation are limited.

 

B1 - Figure 2 Small Cell Interference Scenarios.png

Figure 2 Co-channel interference scenarios in small cell deployments.

 

To address the uplink-downlink coverage imbalance, the coverage area of the small cell base station is extended to allow the small cell to capture more traffic. This is accomplished by adding a bias to the small cell received signal during the cell selection process. But extending the small cell coverage also increases the chances of downlink interference to a mobile subscriber operating at the edge of the small cell.

 

Aside from co-channel interference, there's also a risk of adjacent channel interference in multicarrier networks where macrocells implement two or more frequency carriers. Consider for example a mobile attached to a macrocell on frequency A while it is very close to a small cell operating on adjacent frequency B. The mobile is susceptible to adjacent channel interference from the small cell which would likely have a line-of-sight path to the mobile in contrast to a non-line-of-sight connection with the macrocell.  Another example is that for the uplink: a mobile attached to a macrocell and operating from the edge of a small cell on an adjacent frequency could cause interference to the small cell.

 

There are other potential interference scenarios in addition to those described here. But the basic fact is that the actual performance and benefit of small cells will vary, and will do so more widely in the absence of interference mitigation/performance enhancing techniques. This is one reason why some requirements for small cell deployments have been hotly debated, without a firm resolution. For example, a basic requirement is that of small cell backhaul capacity: what should it be? Should the backhaul link be designed to handle the peak throughput rate, which is a function technology, or the average throughput rate which is much harder to ascertain and put a value on because it depends on many factors related to the deployment scenario?

 

Based on the above description, we know that throughput of small cells will depend largely on the load. The more clustered the subscribers, the lower the overall small cell throughput. On the other hand, if there's a light load (few users), then the capacity will be high. If you are an operator, you sure would need to think carefully about the required backhaul capacity! And while we're on the backhaul topic, let's not forget that we also need to make sure that backhaul on the macrocell is dimensioned properly to support higher traffic load which will certainly come as more small cells are deployed.

 

In this post, I went through some aspects of small cell performance.  These problems are well recognized and certain techniques are being developed and integrated into the standards to address them. This raises other important questions to the operator's strategic network planning process, such as: what interference management and performance enhancement features should be considered? And, what is the technology roadmap for these features? I will expand more on some of these techniques in a future blog post.

 

Follow Frank Rayal on Twitter @FrankRayal

Read the original blog entry...

More Stories By Deborah Strickland

The articles presented here are blog posts from members of our Service Provider Mobility community. Deborah Strickland is a Web and Social Media Program Manager at Cisco. Follow us on Twitter @CiscoSPMobility.

@ThingsExpo Stories
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
There is no doubt that Big Data is here and getting bigger every day. Building a Big Data infrastructure today is no easy task. There are an enormous number of choices for database engines and technologies. To make things even more challenging, requirements are getting more sophisticated, and the standard paradigm of supporting historical analytics queries is often just one facet of what is needed. As Big Data growth continues, organizations are demanding real-time access to data, allowing immediate and actionable interpretation of events as they happen. Another aspect concerns how to deliver ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the "Internet of Things" (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his General Session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, discuss the real benefits to focus on, how to understand the requirements of a successful solution, the flow of ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the technology industry and how do they see opportunities for other women in their area of expertise.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.