Click here to close now.

Welcome!

Agile Computing Authors: Liz McMillan, Sematext Blog, Baruch Sadogursky, Ed Featherston, Elizabeth White

Related Topics: CloudExpo® Blog, Java IoT, @MicroservicesE Blog, Open Source Cloud, Agile Computing, Apache

CloudExpo® Blog: Article

The Cure for the Common Cloud-Based Big Data Initiative

Understanding how to work with Big Data

There is no doubt that Big Data holds infinite promise for a range of industries. Better visibility into data across various sources enables everything from insight into saving electricity to agricultural yield to placement of ads on Google. But when it comes to deriving value from data, no industry has been doing it as long or with as much rigor as clinical researchers.

Unlike other markets that are delving into Big Data for the first time and don't know where to begin, drug and device developers have spent years refining complex processes for asking very specific questions with clear purposes and goals. Whether using data for designing an effective and safe treatment for cholesterol, or collecting and mining data to understand proper dosage of cancer drugs, life sciences has had to dot every "i" and cross every "t" in order to keep people safe and for new therapies to pass muster with the FDA. Other industries are now marveling at a new ability to uncover information about efficiencies and cost savings, but - with less than rigorous processes in place - they are often shooting in the dark or only scratching the surface of what Big Data offers.

Drug developers today are standing on the shoulders of those who created, tested and secured FDA approval for treatments involving millions of data points (for one drug alone!) without the luxury of the cloud or sophisticated analytics systems. These systems have the potential to make the best data-driven industry even better. This article will outline key lessons and real-world examples of what other industries can and should learn from life sciences when it comes to understanding how to work with Big Data.

What Questions to Ask, What Data to Collect
In order to gain valuable insights from Big Data, there are two absolute requirements that must be met - understanding both what questions to ask and what data to collect. These two components are symbiotic, and understanding both fully is difficult, requiring both domain expertise and practical experience.

In order to know what data to collect, you first must know the types of questions that you're going to want to ask - often an enigma. With the appropriate planning and experience-based guesses, you can often make educated assumptions. The trick to collecting data is that you need to collect enough to answer questions, but if you collect too much then you may not be able to distill the specific subset that will answer your questions. Also, explicit or inherent cost can prevent you from collecting all possible data, in which case you need to carefully select which areas to collect data about.

Let's take a look at how this is done in clinical trials. Say you're designing a clinical study that will analyze cancer data. You may not have specific questions when the study is being designed, but it's reasonable to assume that you'll want to collect data related to commonly impacted readings for the type of cancer and whatever body system is affected, so that you have the right information to analyze when it comes time.

You may also want to collect data unrelated to the specific disease that subsequent questions will likely require, such as information on demographics and medications that the patient is taking that are different from the treatment. During the post-study data analysis, questions on these areas often arise, even though the questions aren't initially apparent. Thus clinical researchers have adopted common processes for collecting data on demographics and concomitant medications. Through planning and experience, you can also identify areas that do not need to be collected for each study. For example, if you're studying lung cancer, collecting cognitive function data is probably unrelated.

How can other industries anticipate what questions to ask, as is done in life sciences? Well, determine a predefined set of questions that are directly related to the goal of the data analysis. Since you will not know all of the questions until after the data collection have started, it's important to 1) know the domain, and 2) collect any data you'll need to answer the likely questions that could come up.

Also, clinical researchers have learned that questions can be discovered automatically. There are data mining techniques that can uncover statistically significant connections, which in effect are raising questions that can be explored in more detail afterwards. An analysis can be planned before data is collected, but not actually be run until afterwards (or potentially during), if the appropriate data is collected.

One other area that has proven to be extremely important to collect is metadata, or data about the data - such as, when it was collected, where it was collected, what instrumentation was used in the process and what calibration information was available. All of this information can be utilized later on to answer a lot of potentially important questions. Maybe there was a specific instrument that was incorrectly configured and all the resulting data that it recorded is invalid. If you're running an ad network, maybe there's a specific web site where your ads are run that are gaming the system trying to get you to pay more. If you're running a minor league team, maybe there's a specific referee that's biased, which you can address for subsequent games. Or, if you're plotting oil reserves in the Gulf of Mexico, maybe there are certain exploratory vessels that are taking advantage of you. In all of these cases, without the appropriate metadata, it'd be impossible to know where real problems reside.

Identifying Touch Points to Be Reviewed Along the Way
There are ways to specify which types of analysis can be performed, even while data is being collected, that can affect either how data will continue to be collected or the outcome as a whole.

For example, some clinical studies run what's called interim analysis while the study is in progress. These interim analyses are planned, and the various courses that can be used afterwards are well defined, but the results afterward are statistically usable. This is called an adaptive clinical trial, and there are a lot of studies that are being performed to determine more effective and useful ways that these can be done in the future. The most important aspect of these is preventing biases, and this is something that has been well understood and tested by the pharmaceutical community over the past several decades. Simply understanding what's happening during the course of a trial, or how it affects the desired outcome, can actually bias the results.

The other key factor is that the touch points are accessible to everybody who needs the data. For example, if you have a person in the field, then it's important to have him or her access the data in a format that's easily consumable to them - maybe through an iPad or an existing intranet portal. Similarly, if you have an executive that needs to understand something at a high level, then getting it to them in an easily consumable executive dashboard is extremely important.

As the life sciences industry has learned, if the distribution channels of the analytics aren't seamless and frictionless, then they won't be utilized to their fullest extent. This is where cloud-based analytics become exceptionally powerful - the cloud makes it much easier to integrate analytics into every user's day. Once each user gets the exact information they need, effortlessly, they can then do their job better and the entire organization will work better - regardless of how and why the tools are being used.

Augmenting Human Intuition
Think about the different types of tools that people use on a daily basis. People use wrenches to help turn screws, cars to get to places faster and word processers to write. Sure, we can use our hands or walk, but we're much more efficient and better when we can use tools.

Cloud-based analytics is a tool that enables everybody in an organization to perform more efficiently and effectively. The first example of this type of augmentation in the life sciences industry is alerting. A user tells the computer what they want to see, and then the computer alerts them via email or text message when the situation arises. Users can set rules for the data it wants to see, and then the tools keep on the lookout to notify the user when the data they are looking for becomes available.

Another area the pharmaceutical industry has thoroughly explored is data-driven collaboration techniques. In the clinical trial process, there are many different groups of users: those who are physically collecting the data (investigators), others who are reviewing it to make sure that it's clean (data managers), and also people who are stuck in the middle (clinical monitors). Of course there are many other types of users, but this is just a subset to illustrate the point. These different groups of users all serve a particular purpose relating to the overall collection of data and success of the study. When the data looks problematic or unclean, the data managers will flag it for review, which the clinical monitors can act on.

What's unique about the way that life sciences deals with this is that they've set up complex systems and rules to make sure that the whole system runs well. The tools associated around these processes help augment human intuition through alerting, automated dissemination and automatic feedback. The questions aren't necessarily known at the beginning of a trial, but as the data is collected, new questions evolve and the tools and processes in place are built to handle the changing landscape.

No matter what the purpose of Big Data analytics, any organization can benefit from the mindset of cloud-based analytics as a tool that needs to consistently be adjusted and refined to meet the needs of users.

Ongoing Challenges of Big Data Analytics
Given this history with data, one would expect that drug and device developers would be light years ahead when it comes to leveraging Big Data technologies - especially given that the collection and analytics of clinical data is often a matter of life and death. But while they have much more experience with data, the truth is that life sciences organizations are just now starting to integrate analytics technologies that will enable them to work with that data in new, more efficient ways - no longer involving billions of dollars a year, countless statisticians, archaic methods, and, if we're being honest, brute force. As new technology becomes available, the industry will continue to become more and more seamless. In the meantime, other industries looking to wrap their heads around the Big Data challenge should look to life sciences as the starting point for best practices in understanding how and when to ask the right questions, monitoring data along the way and selecting tools that improve the user experience.

More Stories By Rick Morrison

Rick Morrison is CEO and co-founder of Comprehend Systems. Prior to Comprehend Systems, he was the Chief Technology Officer of an Internet-based data aggregator, where he was responsible for product development and operations. Prior to that, he was at Integrated Clinical Systems, where he led the design and implementation of several major new features. He also proposed and led a major infrastructure redesign, and introduced new, streamlined development processes. Rick holds a BS in Computer Science from Carnegie Mellon University in Pittsburgh, Pennsylvania.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
The recent trends like cloud computing, social, mobile and Internet of Things are forcing enterprises to modernize in order to compete in the competitive globalized markets. However, enterprises are approaching newer technologies with a more silo-ed way, gaining only sub optimal benefits. The Modern Enterprise model is presented as a newer way to think of enterprise IT, which takes a more holistic approach to embracing modern technologies.
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
There's no doubt that the Internet of Things is driving the next wave of innovation. Google has spent billions over the past few months vacuuming up companies that specialize in smart appliances and machine learning. Already, Philips light bulbs, Audi automobiles, and Samsung washers and dryers can communicate with and be controlled from mobile devices. To take advantage of the opportunities the Internet of Things brings to your business, you'll want to start preparing now.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
The world is at a tipping point where the technology, the device and global adoption are converging to such a point that we will see an explosion of a world where smartphone devices not only allow us to talk to each other, but allow for communication between everything – serving as a central hub from which we control our world – MediaTek is at the heart of both driving this and allowing the markets to drive this reality forward themselves. The next wave of consumer gadgets is here – smart, connected, and small. If your ambitions are big, so are ours. In his session at @ThingsExpo, Jack Hu, D...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
SYS-CON Events announced today that O'Reilly Media has been named “Media Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York City, NY. O'Reilly Media spreads the knowledge of innovators through its books, online services, magazines, and conferences. Since 1978, O'Reilly Media has been a chronicler and catalyst of cutting-edge development, homing in on the technology trends that really matter and spurring their adoption by amplifying "faint signals" from the alpha geeks who are creating the future. An active participa...
We’re entering a new era of computing technology that many are calling the Internet of Things (IoT). Machine to machine, machine to infrastructure, machine to environment, the Internet of Everything, the Internet of Intelligent Things, intelligent systems – call it what you want, but it’s happening, and its potential is huge. IoT is comprised of smart machines interacting and communicating with other machines, objects, environments and infrastructures. As a result, huge volumes of data are being generated, and that data is being processed into useful actions that can “command and control” thi...
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
The worldwide cellular network will be the backbone of the future IoT, and the telecom industry is clamoring to get on board as more than just a data pipe. In his session at @ThingsExpo, Evan McGee, CTO of Ring Plus, Inc., discussed what service operators can offer that would benefit IoT entrepreneurs, inventors, and consumers. Evan McGee is the CTO of RingPlus, a leading innovative U.S. MVNO and wireless enabler. His focus is on combining web technologies with traditional telecom to create a new breed of unified communication that is easily accessible to the general consumer. With over a de...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...