Welcome!

Agile Computing Authors: Liz McMillan, Zakia Bouachraoui, Yeshim Deniz, Elizabeth White, Pat Romanski

Related Topics: @CloudExpo, Agile Computing

@CloudExpo: Article

Analytics for the Cloud

How Cloud and Big Data Trends Will Impact APM Analytics

“Big Data” is everywhere. What does it mean? Just as Cloud Computing burst onto the scene a few years ago, it depends on whom you ask.

Traditionally, in the Business Intelligence (BI) world, Big Data included analyzing historical business data from large data warehouse with the purpose of identifying long-term trends that could be leveraged in consumer business strategies. In recent years, Big Data has been a term talked about in the IT industry as an application of technology to attack extremely large, unstructured data sets that can reside both within and outside of an organization. If you look at a recent definition of Big Data, it is a term applied to data sets whose size has grown beyond the capability of commonly used software tools to capture, manage and analyze within a tolerable period of times for different use cases.

Application Performance Management (APM) is an extremely relevant use case and has a developing “Big Data” problem. Several factors are contributing to the explosive growth and type of data that must be analyzed and/or correlated in application performance monitoring and business service management (BSM).

First, the number of components that make up today’s mission critical applications has exploded. Instead of hundreds of servers for an application, nowadays, because of virtualization, you can easily be talking about thousands of virtual servers and objects for web applications.

Secondly, the diversity of data that people want to analyze to provide a holistic perspective has increased drastically. It is no longer good enough to simply understand traditional IT infrastructure performance based on server operating system, network traffic, and storage capacity. Application Performance analysis is now based on the relationships of IT infrastructure components, application performance metrics from applications and application servers, business activity monitors (BAM) data, customer experience monitors (CEM) and Real-User Monitoring (RUM). In addition to the aggregated transactional data, there are new systems that capture transactions’ actual path encompassing the entire application stack.

Finally, the requirements for analysis speed and data granularity have also increased significantly. Mission critical application performance now requires real-time or near real-time data analysis. When we were doing server availability and performance monitoring 10 years ago, it was the norm to collect and analyze data every 15 minutes. Today, this has evolved to data analysis every 5 minutes or less with sub-minute data collection where all transaction paths are collected for data analysis. When mapped out, it’s easy to see the enormous growth particularly when you look at APM related storage requirements that are quickly growing from gigabytes to terabytes and tomorrow petabytes.

All this data requires extremely complex analysis and correlation in order to truly understand performance of critical applications. One of Netuitive’s large enterprise customers reported that it monitors and correlates a billion infrastructure and application data points and business metrics daily as part of its global service delivery. This is what I am referring to as APM-generated Big Data. In addition to the shear number of data points, IT operators are expected to provide real-time analysis to the business and long-term storage for post-mortem analysis, capacity planning and compliance.

So where does this leads us? This is where APM and Big Data meet The Cloud. The cloud can deliver cheaper and more flexible storage and computing power crucial to analytics for Big Data. It also has the capability to be much more elastic for your APM data storage and analytics needs. Organizations can actually think about storing years of collected and aggregated APM data for compliance and analysis purposes without the cost being prohibitive.

But what does this mean to vendors in the APM space?

First of all, the analytics platform for APM data has to evolve to be able to process the growing number of different data sources across business, customer experience, applications and IT domains. Netuitive’s “Open” analytics platform is engineered to address virtually any data source in real-time.

Secondly, data storage and access time will be critical even as APM data volumes continue to explode, so not only does the technology need to be able to run in the cloud, but the traditional pull-based data collection architecture has to evolve into a push based model with an horizontally scalable computing and storage architecture in order to become virtually limitless in terms of scalability. This is critical for larger organizations as “real” time no longer means analysis every 5 to 15 minutes, but sub-minute analytics.

Lastly, because storage and computing costs should not significantly exceed the cost of analytics software for a solution to be viable, Netuitive is advancing its product architecture to leverage NoSQL columnar data store as a replacement to traditional database. Netuitive is also experimenting with a SaaS model for long-term time series data store and running its analytics software in the cloud.

While our R&D challenges are complex, the goal is simple: provide APM Analytics that matters by enabling our enterprise customers to process billions of infrastructure, application, and business metrics from hundreds of thousands of managed elements at 10x less cost than existing infrastructures.

I look forward to reporting on our progress. Check the blog for updates.

More Stories By Jean-François (JF) Huard

Jean-François (JF) Huard is Chief Technical Officer and Vice President of Research and Development at Netuitive, Inc. In this role he is responsible for leading the company’s vision and technology innovation effort. Previously, he worked in network control and management focusing on optimal flow control, decision-theoretic troubleshooting and game-theoretic bandwidth trading.

His current interest focus on IT analytics, APM analytics, cloud management and big data technologies.

Jean-François received his PhD (EE) from Columbia University, New York.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...