Welcome!

Agile Computing Authors: Yeshim Deniz, Elizabeth White, Zakia Bouachraoui, Liz McMillan, Pat Romanski

Related Topics: @CloudExpo

@CloudExpo: Blog Post

The Economics of Big Data: Why Faster Software is Cheaper

Faster means better and cheaper - lower latency and lower cost!

In big data computing, and more generally in all commercial highly parallel software systems, speed matters more than just about anything else. The reason is straightforward, and has been known for decades.

Put very simply, when it comes to massively parallel software of the kind need to handle big data, fast is both better AND cheaper. Faster means lower latency AND lower cost.

At first this may seem counterintuitive. A high-end sports car will be much faster than a standard family sedan, but the family sedan may be much cheaper. Cheaper to buy, and cheaper to run. But massively parallel software running on commodity hardware is a quite different type of product from a car. In general, the faster it goes, the cheaper it is to run.

Time Is Money
As has been noted many times in the history of computing, if you are a factor of 50x slower, then you will need 50x more nodes to run at the same speed (even assuming perfect parallelization), or your computation will need 50x more time. In either case, it will also be much more likely that you will experience at least one of your nodes crashing during a computation. This is not to argue that automatic fault tolerance and recovery should be ignored in the pursuit of speed, but rather that these two factors need to be carefully balanced. Good design in massively parallel systems is about achieving maximum speed along with the ability to recover from a given expected level of hardware failure, via checkpointing.

The key phrase here is "a given expected level of hardware failure". In certain types of peer-to-peer services which take advantage of idle PC capacity, it is necessary to assume that all machines are extremely unreliable and may go offline at any time. However, in a commercial big data cluster it may be reasonably asssumed that almost all machines will be available almost all of the time. This means that a much more optimistic point in the design space can be chosen, one which is designed much more for speed than for pathological failure scenarios.

The MapReduce model is an example of a model where speed has been sacrificed in a major way in order to achieve scalability on very unreliable hardware. As we have noted, while this is acceptable in certain types of free peer-to-peer services, it is much less acceptable in commercial big data systems deployed at scale.

Google, the inventors of the model, were the first to recognize the throughput and latency problems with the MapReduce model. To get the realtime performance they required, they recently replaced MapReduce in their Google Instant search engine.

The MapReduce model of Apache Hadoop is slow. In fact, it's very slow compared to, for example, the kinds of MPI or BSP clusters that have been routinely used in supercomputing for more than 15 years. On exactly the same hardware, MapReduce can be several orders of magnitude slower than MPI or BSP. By using MPI rather than MapReduce, HadoopBI gives customers the best possible big data solution, not only in terms of performance - massive throughput and extremely low latency - but also in terms of economics. HadoopBI is not just the fastest Big Data BI solution, it is also the cheapest at scale.

It's Free, But Is It Fast Enough?
Another frequently misunderstood element of big data economics concerns so-called "free" software. It has been argued by some that, since big data software needs to be run on many nodes, it is really important to have software that is free. Again this is an extreme oversimplification that ignores the dominant cost issues in big data economics. At large scale, software costs will in general be much smaller than hardware or cloud costs. And commercial software vendors should ensure that they are, if they want to stay in business.

Consider the following small-scale example. A company needs to process big data continuously in order to maximize competitive advantage. For simplicity, we will assume that the cost of running a single server (in-house or cloud) for one hour is $1, and that the company has a choice between two big data software systems - system A costs $1,000 per server and system B is free, but system A is 8x faster. Choosing system A, the company requires 5 servers, working continuously, to achieve the throughput required. However, if the company chooses system B, it will require 40 servers running continuously.

Simple arithmetic shows that within just six days, the initial cost of system A has been recovered, and from then on system A gives the company massive cost savings. Even if system A is only 2x or 3x faster and more efficient than system B, the initial cost will still be recovered in a matter of a few weeks.

The economic advantages of speed at scale are magnified even more in large-scale big data systems where, with volume licensing discounts, the payback time for super-fast software is even shorter.

The lesson of the above example is simple and very important. In parallel systems, speed at scale is king, as speed equates to efficiency, and efficiency equates to massive cost savings at scale. So, to be relevant for large scale production deployments, free parallel software has to be at least as fast and efficient as the best commercial software, otherwise the economics will be solidly against it. Some examples of free software, such as the Linux operating system, have achieved this goal. It remains to be seen whether this will also be the case with highly parallel big data software. In the meantime, it's important to remember that "free software is cheap, but fast software can be even cheaper".

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of ...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and sh...
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
Cell networks have the advantage of long-range communications, reaching an estimated 90% of the world. But cell networks such as 2G, 3G and LTE consume lots of power and were designed for connecting people. They are not optimized for low- or battery-powered devices or for IoT applications with infrequently transmitted data. Cell IoT modules that support narrow-band IoT and 4G cell networks will enable cell connectivity, device management, and app enablement for low-power wide-area network IoT. B...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and Bi...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.