Click here to close now.

Welcome!

Web 2.0 Authors: Aria Blog, Elizabeth White, Plutora Blog, Liz McMillan, Trevor Parsons

Related Topics: Eclipse, Java, SOA & WOA, Websphere, Weblogic, .NET, Oracle, HP, Cloud Expo

Eclipse: Article

Cloud Computing, SOA and Windows Azure

Cloud Services with Windows Azure - Part 1

For a complete list of the co-authors and contributors, see the end of the article.

Microsoft's Software-plus-Services strategy represents a view of the world where the growing feature-set of devices and the increasing ubiquity of the Web are combined to deliver more compelling solutions. Software-plus-Services represents an evolutionary step that is based on existing best practices in IT and extends the application potential of core service-orientation design principles.

Microsoft's efforts to embrace the Software-plus-Services vision are framed by three core goals:

  • User experiences should span beyond a single device
  • Solution architectures should be able to intelligently leverage and integrate
    on-premise IT assets with cloud assets
  • Tightly coupled systems should give way to federations of cooperating systems and loosely coupled compositions

The Windows Azure platform represents one of the major components of the Software-plus-Services strategy, as Microsoft's cloud computing operating environment, designed from the outset to holistically manage pools of computation, storage and networking; all encapsulated by one or more services.

Cloud Computing 101
Just like service-oriented computing, cloud computing is a term that represents many diverse perspectives and technologies. In this book, our focus is on cloud computing in relation to SOA and Windows Azure.

Cloud computing enables the delivery of scalable and available capabilities by leveraging dynamic and on-demand infrastructure. By leveraging these modern service technology advances and various pervasive Internet technologies, the "cloud" represents an abstraction of services and resources, such that the underlying complexities of the technical implementations are encapsulated and transparent from users and consumer programs interacting with the cloud.

At the most fundamental level, cloud computing impacts two aspects of how people interact with technologies today:

  • How services are consumed
  • How services are delivered

Although cloud computing was originally, and still often is, associated with Web-based applications that can be accessed by end-users via various devices, it is also very much about applications and services themselves being consumers of cloud-based services. This fundamental change is a result of the transformation brought about by the adoption of SOA and Web-based industry standards, allowing for service-oriented and Web-based resources to become universally accessible on the Internet as on-demand services.

One example has been an approach whereby programmatic access to popular functions on Web properties is provided by simplifying efforts at integrating public-facing services and resource-based interactions, often via RESTful interfaces. This was also termed "Web-oriented architecture" or "WOA," and was considered a subset of SOA. Architectural views such as this assisted in establishing the Web-as-a-platform concept, and helped shed light on the increasing inter-connected potential of the Web as a massive collection (or cloud) of ready-to-use and always-available capabilities.

This view can fundamentally change the way services are designed and constructed, as we reuse not only someone else's code and data, but also their infrastructure resources, and leverage them as part of our own service implementations. We do not need to understand the inner workings and technical details of these services; Service Abstraction (696), as a principle, is applied to its fullest extent by hiding implementation details behind clouds.

SOA Principles and Patterns
There are several SOA design patterns that are closely related to common cloud computing implementations, such as Decoupled Contract [735], Redundant Implementation [766], State Repository [785], and Stateful Services [786]. In this and subsequent chapters, these and other patterns will be explored as they apply specifically to the Windows Azure cloud ­platform.

With regards to service delivery, we are focused on the actual design, development, and implementation of cloud-based services. Let's begin by establishing high-level characteristics that a cloud computing environment can include:

  • Generally accessible
  • Always available and highly reliable
  • Elastic and scalable
  • Abstract and modular resources
  • Service-oriented
  • Self-service management and simplified provisioning

Fundamental topics regarding service delivery pertain to the cloud deployment model used to provide the hosting environment and the service delivery model that represents the functional nature of a given cloud-based service. The next two sections explore these two types of models.

Cloud Deployment Models
There are three primary cloud deployment models. Each can exhibit the previously listed characteristics; their differences lie primarily in the scope and access of published cloud services, as they are made available to service consumers.

Let's briefly discuss these deployment models individually.

Public Cloud
Also known as external cloud or multi-tenant cloud, this model essentially represents a cloud environment that is openly accessible. It generally provides an IT infrastructure in a third-party physical data center that can be utilized to deliver services without having to be concerned with the underlying technical complexities.

Essential characteristics of a public cloud typically include:

  • Homogeneous infrastructure
  • Common policies
  • Shared resources and multi-tenant
  • Leased or rented infrastructure; operational expenditure cost model
  • Economies of scale and elastic scalability

Note that public clouds can host individual services or collections of services, allow for the deployment of service compositions, and even entire service inventories.

Private Cloud
Also referred to as internal cloud or on-premise cloud, a private cloud intentionally limits access to its resources to service consumers that belong to the same organization that owns the cloud. In other words, the infrastructure that is managed and operated for one organization only, primarily to maintain a consistent level of control over security, privacy, and governance.

Essential characteristics of a private cloud typically include:

  • Heterogeneous infrastructure
  • Customized and tailored policies
  • Dedicated resources
  • In-house infrastructure (capital expenditure cost model)
  • End-to-end control

Community Cloud
This deployment model typically refers to special-purpose cloud computing environments shared and managed by a number of related organizations participating in a common domain or vertical market.

Other Deployment Models
There are variations of the previously discussed deployment models that are also worth noting. The hybrid cloud, for example, refers to a model comprised of both private and public cloud environments. The dedicated cloud (also known as the hosted cloud or virtual private cloud) represents cloud computing environments hosted and managed off-premise or in public cloud environments, but dedicated resources are provisioned solely for an organization's private use.

The Intercloud (Cloud of Clouds)
The intercloud is not as much a deployment model as it is a concept based on the aggregation of deployed clouds (Figure 8.1). Just like the Internet, which is a network of networks; intercloud refers to an inter-connected global cloud of clouds. Also like the World Wide Web, intercloud represents a massive collection of services that organizations can explore and consume.

Figure 1: Examples of how vendors establish a commercial intercloud

From a services consumption perspective, we can look at the intercloud as an on-demand SOA environment where useful services managed by other organizations can be leveraged and composed. In other words, services that are outside of an organization's own boundaries and operated and managed by others can become a part of the aggregate portfolio of services of those same organizations.

Deployment Models and Windows Azure
Windows Azure exists in a public cloud. Windows Azure itself is not made available as a packaged software product for organizations to deploy into their own IT enterprises. However, Windows Azure-related features and extensions exist in Microsoft's on-premise software products, and are collectively part of Microsoft's private cloud strategy. It is important to understand that even though the software infrastructure that runs Microsoft's public cloud and private clouds are different, layers that matter to end-user organizations, such as management, security, integration, data, and application are increasingly consistent across private and public cloud environments.

Service Delivery Models
Many different types of services can be delivered in the various cloud deployment environments. Essentially, any IT resource or function can eventually be made available as a service. Although cloud-based ecosystems allow for a wide range of service delivery models, three have become most prominent:

Infrastructure-as-a-Service (IaaS)
This service delivery model represents a modern form of utility computing and outsourced managed hosting. IaaS environments manage and provision fundamental computing resources (networking, storage, virtualized servers, etc.). This allows consumers to deploy and manage assets on leased or rented server instances, while the service providers own and govern the underlying infrastructure.

Platform-as-a-Service (PaaS)
The PaaS model refers to an environment that provisions application platform resources to enable direct deployment of application-level assets (code, data, configurations, policies, etc.). This type of service generally operates at a higher abstraction level so that users manage and control the assets they deploy into these environments. With this arrangement, service providers maintain and govern the application environments, server instances, as well as the underlying infrastructure.

Software-as-a-Service (SaaS)
Hosted software applications or multi-tenant application services that end-users consume directly correspond to the SaaS delivery model. Consumers typically only have control over how they use the cloud-based service, while service providers maintain and govern the software, data, and underlying infrastructure.

Other Delivery Models
Cloud computing is not limited to the aforementioned delivery models. Security, governance, business process management, integration, complex event processing, information and data repository processing, collaborative processes-all can be exposed as services and consumed and utilized to create other services.

Note: Cloud deployment models and service delivery models are covered in more detail in the upcoming book SOA & Cloud Computing as part of the Prentice Hall Service-Oriented Computing Series from Thomas Erl. This book will also introduce several new design patterns related to cloud-based service, composition, and platform design.

IaaS vs. PaaS
In the context of SOA and developing cloud-based services with Windows Azure, we will focus primarily on IaaS and PaaS delivery models in this chapter. Figure 8.2 illustrates a helpful comparison that contrasts some primary differences. Basically, IaaS represents a separate environment to host the same assets that were traditionally hosted on-premise, whereas PaaS represents environments that can be leveraged to build and host next-generation service-oriented solutions.

Figure 2: Common Differentiations Between Delivery Models

We interact with PaaS at a higher abstraction level than with IaaS. This means we manage less of the infrastructure and assume simplified administration responsibilities. But at the same time, we have less control over this type of environment.

IaaS provides a similar infrastructure to traditional on-premise environments, but we may need to assume the responsibility to re-architect an application in order to effectively leverage platform service clouds. In the end, PaaS will generally achieve a higher level of scalability and reliability for hosted services.

An on-premise infrastructure is like having your own car. You have complete control over when and where you want to drive it, but you are also responsible for its operation and maintenance. IaaS is like using a car rental service. You still have control over when and where you want to go, but you don't need to be concerned with the vehicle's maintenance. PaaS is more comparable to public transportation. It is easier to use as you don't need to know how to operate it and it costs less. However, you don't have control over its operation, schedule, or routes.

Summary

  • Cloud computing enables the delivery of scalable and available capabilities by leveraging dynamic and on-demand infrastructure.
  • There are three common types of cloud deployment models: public cloud, private cloud, and community cloud.
  • There are three common types of service delivery models: IaaS, PaaS, and SaaS.

•   •   •

This excerpt is from the book, "SOA with .NET & Windows Azure: Realizing Service-Orientation with the Microsoft Platform", edited and co-authored by Thomas Erl, with David Chou, John deVadoss, Nitin Ghandi, Hanu Kommapalati, Brian Loesgen, Christoph Schittko, Herbjörn Wilhelmsen, and Mickie Williams, with additional contributions from Scott Golightly, Daryl Hogan, Jeff King, and Scott Seely, published by Prentice Hall Professional, June 2010, ISBN 0131582313, Copyright 2010 SOA Systems Inc. For a complete Table of Contents please visit: www.informit.com/title/0131582313

Authors
David Chou is a technical architect at Microsoft and is based in Los Angeles. His focus is on collaborating with enterprises and organizations in such areas as cloud computing, SOA, Web, distributed systems, and security.

John deVadoss leads the Patterns & Practices team at Microsoft and is based in Redmond, WA.

Thomas Erl is the world's top-selling SOA author, series editor of the Prentice Hall Service-Oriented Computing Series from Thomas Erl (www.soabooks.com), and editor of the SOA Magazine (www.soamag.com).

Nitin Gandhi is an enterprise architect and an independent software consultant, based in Vancouver, BC.

Hanu Kommalapati is a Principal Platform Strategy Advisor for a Microsoft Developer and Platform Evangelism team based in North America.

Brian Loesgen is a Principal SOA Architect with Microsoft, based in San Diego. His extensive experience includes building sophisticated enterprise, ESB and SOA solutions.

Christoph Schittko is an architect for Microsoft, based in Texas. His focus is to work with customers to build innovative solutions that combine software + services for cutting edge user experiences and the leveraging of service-oriented architecture (SOA) solutions.

Herbjörn Wilhelmsen is a consultant at Forefront Consulting Group, based in Stockholm, Sweden. His main areas of focus are Service-Oriented Architecture, Cloud Computing and Business Architecture.

Mickey Williams leads the Technology Platform Group at Neudesic, based in Laguna Hills,

Contributors
Scott Golightly is currently an Enterprise Solution Strategist with Advaiya, Inc; he is also a Microsoft Regional Director with more than 15 years of experience helping clients to create solutions to business problems with various technologies.

Darryl Hogan is an architect with more than 15 years experience in the IT industry. Darryl has gained significant practical experience during his career as a consultant, technical evangelist and architect.

As a Senior Technical Product Manager at Microsoft, Kris works with customers, partners, and industry analysts to ensure the next generation of Microsoft technology meets customers' requirements for building distributed, service-oriented solutions.

Jeff King has been working with the Windows Azure platform since its first announcement at PDC 2008 and works with Windows Azure early adopter customers in the Windows Azure TAP

Scott Seely is co-founder of Tech in the Middle, www.techinthemiddle.com, and president of Friseton, LLC,

More Stories By Thomas Erl

Thomas Erl is a best-selling IT author and founder of Arcitura Education Inc., a global provider of vendor-neutral educational services and certification that encompasses the Cloud Certified Professional (CCP) and SOA Certified Professional (SOACP) programs from CloudSchool.com™ and SOASchool.com® respectively. Thomas has been the world's top-selling service technology author for nearly a decade and is the series editor of the Prentice Hall Service Technology Series from Thomas Erl, as well as the editor of the Service Technology Magazine. With over 175,000 copies in print world-wide, his eight published books have become international bestsellers and have been formally endorsed by senior members of many major IT organizations and academic institutions. To learn more, visit: www.thomaserl.com

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Even as cloud and managed services grow increasingly central to business strategy and performance, challenges remain. The biggest sticking point for companies seeking to capitalize on the cloud is data security. Keeping data safe is an issue in any computing environment, and it has been a focus since the earliest days of the cloud revolution. Understandably so: a lot can go wrong when you allow valuable information to live outside the firewall. Recent revelations about government snooping, along with a steady stream of well-publicized data breaches, only add to the uncertainty
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness, and in-car entertainment and this excitement will bleed into other areas. On the commercial side, m...
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
The Workspace-as-a-Service (WaaS) market will grow to $6.4B by 2018. In his session at 16th Cloud Expo, Seth Bostock, CEO of IndependenceIT, will begin by walking the audience through the evolution of Workspace as-a-Service, where it is now vs. where it going. To look beyond the desktop we must understand exactly what WaaS is, who the users are, and where it is going in the future. IT departments, ISVs and service providers must look to workflow and automation capabilities to adapt to growing demand and the rapidly changing workspace model.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The Internet of Things (IoT) promises to evolve the way the world does business; however, understanding how to apply it to your company can be a mystery. Most people struggle with understanding the potential business uses or tend to get caught up in the technology, resulting in solutions that fail to meet even minimum business goals. In his session at @ThingsExpo, Jesse Shiah, CEO / President / Co-Founder of AgilePoint Inc., showed what is needed to leverage the IoT to transform your business. He discussed opportunities and challenges ahead for the IoT from a market and technical point of vie...
Hadoop as a Service (as offered by handful of niche vendors now) is a cloud computing solution that makes medium and large-scale data processing accessible, easy, fast and inexpensive. In his session at Big Data Expo, Kumar Ramamurthy, Vice President and Chief Technologist, EIM & Big Data, at Virtusa, will discuss how this is achieved by eliminating the operational challenges of running Hadoop, so one can focus on business growth. The fragmented Hadoop distribution world and various PaaS solutions that provide a Hadoop flavor either make choices for customers very flexible in the name of opti...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Advanced Persistent Threats (APTs) are increasing at an unprecedented rate. The threat landscape of today is drastically different than just a few years ago. Attacks are much more organized and sophisticated. They are harder to detect and even harder to anticipate. In the foreseeable future it's going to get a whole lot harder. Everything you know today will change. Keeping up with this changing landscape is already a daunting task. Your organization needs to use the latest tools, methods and expertise to guard against those threats. But will that be enough? In the foreseeable future attacks w...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
As organizations shift toward IT-as-a-service models, the need for managing and protecting data residing across physical, virtual, and now cloud environments grows with it. CommVault can ensure protection &E-Discovery of your data – whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise. In his session at 16th Cloud Expo, Randy De Meno, Chief Technologist - Windows Products and Microsoft Partnerships, will discuss how to cut costs, scale easily, and unleash insight with CommVault Simpana software, the only si...